ubuntu 16.04源码编译和配置caffe详细教程 | Install and Configure Caffe on ubuntu 16.04
本文首发于个人博客https://kezunlin.me/post/b90033a9/,欢迎阅读!
Install and Configure Caffe on ubuntu 16.04
Series
- Part 1: Install and Configure Caffe on windows 10
- Part 2: Install and Configure Caffe on ubuntu 16.04
Guide
requirements:
- NVIDIA driver 396.54
- CUDA 8.0 + cudnn 6.0.21
- CUDA 9.2 +cudnn 7.1.4
- opencv 3.1.0 --->3.3.0
- python 2.7 + numpy 1.15.1
- python 3.5.2 + numpy 1.16.2
- protobuf 3.6.1 (static)
- caffe latest
默认的protobuf,2.6.1测试通过。
此处,使用最新的3.6.1 也可以,编译caffe需要加上-std=c++11
install CUDA + cudnn
see install and configure cuda 9.2 with cudnn 7.1 on ubuntu 16.04
tips: we need to recompile caffe with cudnn 7.1
before we compile caffe, move caffe/python/caffe/selective_search_ijcv_with_python
folder outside caffe source folder, otherwise error occurs.
install protobuf
see Part 1: compile protobuf-cpp on ubuntu 16.04
which protoc
/usr/local/bin/protoc
protoc --version
libprotoc 3.6.1
caffe使用static的libprotoc 3.6.1
install opencv
see compile opencv on ubuntu 16.04
which opencv_version
/usr/local/bin/opencv_version
opencv_version
3.3.0
python
python --version
Python 2.7.12
check numpy
version
import numpy
numpy.__version__
'1.15.1'
import numpy
import inspect
inspect.getfile(numpy)
'/usr/local/lib/python2.7/dist-packages/numpy/__init__.pyc'
compile caffe
clone repo
git clone https://github.com/BVLC/caffe.git
cd caffe
update repo
update at 20180822.
if you change your local Makefile and git pull origin master
merge conflict, solution
git checkout HEAD Makefile
git pull origin master
configure
mkdir build && cd build && cmake-gui ..
cmake-gui options
USE_CUDNN ON
USE_OPENCV ON
Build_python ON
Build_python_layer ON
BLAS atlas
CMAKE_CXX_FLGAS -std=c++11
CMAKE_INSTALL_PREFIX /home/kezunlin/program/caffe/build/install
使用
-std=c++11
configure output
Dependencies:
BLAS : Yes (Atlas)
Boost : Yes (ver. 1.66)
glog : Yes
gflags : Yes
protobuf : Yes (ver. 3.6.1)
lmdb : Yes (ver. 0.9.17)
LevelDB : Yes (ver. 1.18)
Snappy : Yes (ver. 1.1.3)
OpenCV : Yes (ver. 3.1.0)
CUDA : Yes (ver. 9.2)
NVIDIA CUDA:
Target GPU(s) : Auto
GPU arch(s) : sm_61
cuDNN : Yes (ver. 7.1.4)
Python:
Interpreter : /usr/bin/python2.7 (ver. 2.7.12)
Libraries : /usr/lib/x86_64-linux-gnu/libpython2.7.so (ver 2.7.12)
NumPy : /usr/lib/python2.7/dist-packages/numpy/core/include (ver 1.51.1)
Documentaion:
Doxygen : /usr/bin/doxygen (1.8.11)
config_file : /home/kezunlin/program/caffe/.Doxyfile
Install:
Install path : /home/kezunlin/program/caffe-wy/build/install
Configuring done
we can also use
python3.5
andnumpy 1.16.2
Python:
Interpreter : /usr/bin/python3 (ver. 3.5.2)
Libraries : /usr/lib/x86_64-linux-gnu/libpython3.5m.so (ver 3.5.2)
NumPy : /home/kezunlin/.local/lib/python3.5/site-packages/numpy/core/include (ver 1.16.2)
use -std=c++11
, otherwise errors occur
make -j8
[ 1%] Running C++/Python protocol buffer compiler on /home/kezunlin/program/caffe-wy/src/caffe/proto/caffe.proto
Scanning dependencies of target caffeproto
[ 1%] Building CXX object src/caffe/CMakeFiles/caffeproto.dir/__/__/include/caffe/proto/caffe.pb.cc.o
In file included from /usr/include/c++/5/mutex:35:0,
from /usr/local/include/google/protobuf/stubs/mutex.h:33,
from /usr/local/include/google/protobuf/stubs/common.h:52,
from /home/kezunlin/program/caffe-wy/build/include/caffe/proto/caffe.pb.h:9,
from /home/kezunlin/program/caffe-wy/build/include/caffe/proto/caffe.pb.cc:4:
/usr/include/c++/5/bits/c++0x_warning.h:32:2: error: #error This file requires compiler and library support for the ISO C++ 2011 standard. This support must be enabled with the -std=c++11 or -std=gnu++11 compiler options.
#error This file requires compiler and library support \
fix gcc error
vim /usr/local/cuda/include/host_config.h
# 将其中的第115行注释掉:
#error-- unsupported GNU version! gcc versions later than 4.9 are not supported!
======>
//#error-- unsupported GNU version! gcc versions later than 4.9 are not supported!
fix gflags error
- caffe/include/caffe/common.hpp
- caffe/examples/mnist/convert_mnist_data.cpp
Comment out the ifndef
// #ifndef GFLAGS_GFLAGS_H_
namespace gflags = google;
// #endif // GFLAGS_GFLAGS_H_
compile
make clean
make -j8
make pycaffe
output
[ 1%] Running C++/Python protocol buffer compiler on /home/kezunlin/program/caffe-wy/src/caffe/proto/caffe.proto
Scanning dependencies of target caffeproto
[ 1%] Building CXX object src/caffe/CMakeFiles/caffeproto.dir/__/__/include/caffe/proto/caffe.pb.cc.o
[ 1%] Linking CXX static library ../../lib/libcaffeproto.a
[ 1%] Built target caffeproto
libcaffeproto.a
static library
install
make install
ls build/install
bin include lib python share
will install to
build/install
folder
ls build/install/lib
libcaffeproto.a libcaffe.so libcaffe.so.1.0.0
advanced
- INTERFACE_INCLUDE_DIRECTORIES
- INTERFACE_LINK_LIBRARIES
Target "caffe" has an INTERFACE_LINK_LIBRARIES property which differs from its LINK_INTERFACE_LIBRARIES properties.
Play with Caffe
python caffe
fix python caffe
fix ipython 6.1 version conflict
vim caffe/python/requirements.txt
ipython>=3.0.0
====>
ipython==5.4.1
reinstall ipython
pip install -r requirements.txt
cd caffe/python
python
>>>import caffe
python draw net
sudo apt-get install graphviz
sudo pip install theano=0.9
# for theano d3viz
sudo pip install pydot==1.1.0
sudo pip install pydot-ng
# other usefull tools
sudo pip install jupyter
sudo pip install seaborn
we need to install graphviz, otherwise we get ERROR:"dot" not found in path
draw net
cd $CAFFE_HOME
./python/draw_net.py ./examples/mnist/lenet.prototxt ./examples/mnist/lenet.png
eog ./examples/mnist/lenet.png
cpp caffe
train net
cd caffe
./examples/mnist/create_mnist.sh
./examples/mnist/train_lenet.sh
cat ./examples/mnist/train_lenet.sh
./build/tools/caffe train --solver=examples/mnist/lenet_solver.prototxt $@
output results
I0912 15:57:28.812655 14094 solver.cpp:327] Iteration 10000, loss = 0.00272129
I0912 15:57:28.812675 14094 solver.cpp:347] Iteration 10000, Testing net (#0)
I0912 15:57:28.891481 14100 data_layer.cpp:73] Restarting data prefetching from start.
I0912 15:57:28.893678 14094 solver.cpp:414] Test net output #0: accuracy = 0.9904
I0912 15:57:28.893707 14094 solver.cpp:414] Test net output #1: loss = 0.0276084 (* 1 = 0.0276084 loss)
I0912 15:57:28.893714 14094 solver.cpp:332] Optimization Done.
I0912 15:57:28.893719 14094 caffe.cpp:250] Optimization Done.
tips, for
caffe
, errors because no imdb data.
I0417 13:28:17.764714 35030 layer_factory.hpp:77] Creating layer mnist
F0417 13:28:17.765067 35030 db_lmdb.hpp:15] Check failed: mdb_status == 0 (2 vs. 0) No such file or directory
---------------------
upgrade net
./tools/upgrade_net_proto_text old.prototxt new.prototxt
./tools/upgrade_net_proto_binary old.caffemodel new.caffemodel
caffe time
yolov3
./build/tools/caffe time --model='det/yolov3/yolov3.prototxt' --iterations=100 --gpu=0 I0313 10:15:41.888208 12527 caffe.cpp:408] Average Forward pass: 49.7012 ms.
I0313 10:15:41.888213 12527 caffe.cpp:410] Average Backward pass: 84.946 ms.
I0313 10:15:41.888248 12527 caffe.cpp:412] Average Forward-Backward: 134.85 ms.
yolov3 autotrain
./build/tools/caffe time --model='det/autotrain/yolo3-autotrain-mbn-416-5c.prototxt' --iterations=100 --gpu=0 I0313 10:19:27.283625 12894 caffe.cpp:408] Average Forward pass: 38.4823 ms.
I0313 10:19:27.283630 12894 caffe.cpp:410] Average Backward pass: 74.1656 ms.
I0313 10:19:27.283638 12894 caffe.cpp:412] Average Forward-Backward: 112.732 ms.
Example
Caffe Classifier
#include <caffe/caffe.hpp>
#ifdef USE_OPENCV
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#endif // USE_OPENCV
#include <algorithm>
#include <iosfwd>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#ifdef USE_OPENCV
using namespace caffe; // NOLINT(build/namespaces)
using std::string;
/* Pair (label, confidence) representing a prediction. */
typedef std::pair<string, float> Prediction;
class Classifier {
public:
Classifier(const string& model_file,
const string& trained_file,
const string& mean_file,
const string& label_file);
std::vector<Prediction> Classify(const cv::Mat& img, int N = 5);
private:
void SetMean(const string& mean_file);
std::vector<float> Predict(const cv::Mat& img);
void WrapInputLayer(std::vector<cv::Mat>* input_channels);
void Preprocess(const cv::Mat& img,
std::vector<cv::Mat>* input_channels);
private:
shared_ptr<Net<float> > net_;
cv::Size input_geometry_;
int num_channels_;
cv::Mat mean_;
std::vector<string> labels_;
};
Classifier::Classifier(const string& model_file,
const string& trained_file,
const string& mean_file,
const string& label_file) {
#ifdef CPU_ONLY
Caffe::set_mode(Caffe::CPU);
#else
Caffe::set_mode(Caffe::GPU);
#endif
/* Load the network. */
net_.reset(new Net<float>(model_file, TEST));
net_->CopyTrainedLayersFrom(trained_file);
CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";
Blob<float>* input_layer = net_->input_blobs()[0];
num_channels_ = input_layer->channels();
CHECK(num_channels_ == 3 || num_channels_ == 1)
<< "Input layer should have 1 or 3 channels.";
input_geometry_ = cv::Size(input_layer->width(), input_layer->height());
/* Load the binaryproto mean file. */
SetMean(mean_file);
/* Load labels. */
std::ifstream labels(label_file.c_str());
CHECK(labels) << "Unable to open labels file " << label_file;
string line;
while (std::getline(labels, line))
labels_.push_back(string(line));
Blob<float>* output_layer = net_->output_blobs()[0];
CHECK_EQ(labels_.size(), output_layer->channels())
<< "Number of labels is different from the output layer dimension.";
}
static bool PairCompare(const std::pair<float, int>& lhs,
const std::pair<float, int>& rhs) {
return lhs.first > rhs.first;
}
/* Return the indices of the top N values of vector v. */
static std::vector<int> Argmax(const std::vector<float>& v, int N) {
std::vector<std::pair<float, int> > pairs;
for (size_t i = 0; i < v.size(); ++i)
pairs.push_back(std::make_pair(v[i], i));
std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);
std::vector<int> result;
for (int i = 0; i < N; ++i)
result.push_back(pairs[i].second);
return result;
}
/* Return the top N predictions. */
std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) {
std::vector<float> output = Predict(img);
N = std::min<int>(labels_.size(), N);
std::vector<int> maxN = Argmax(output, N);
std::vector<Prediction> predictions;
for (int i = 0; i < N; ++i) {
int idx = maxN[i];
predictions.push_back(std::make_pair(labels_[idx], output[idx]));
}
return predictions;
}
/* Load the mean file in binaryproto format. */
void Classifier::SetMean(const string& mean_file) {
BlobProto blob_proto;
ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);
/* Convert from BlobProto to Blob<float> */
Blob<float> mean_blob;
mean_blob.FromProto(blob_proto);
CHECK_EQ(mean_blob.channels(), num_channels_)
<< "Number of channels of mean file doesn't match input layer.";
/* The format of the mean file is planar 32-bit float BGR or grayscale. */
std::vector<cv::Mat> channels;
float* data = mean_blob.mutable_cpu_data();
for (int i = 0; i < num_channels_; ++i) {
/* Extract an individual channel. */
cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
channels.push_back(channel);
data += mean_blob.height() * mean_blob.width();
}
/* Merge the separate channels into a single image. */
cv::Mat mean;
cv::merge(channels, mean);
/* Compute the global mean pixel value and create a mean image
* filled with this value. */
cv::Scalar channel_mean = cv::mean(mean);
mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
}
std::vector<float> Classifier::Predict(const cv::Mat& img) {
Blob<float>* input_layer = net_->input_blobs()[0];
input_layer->Reshape(1, num_channels_,
input_geometry_.height, input_geometry_.width);
/* Forward dimension change to all layers. */
net_->Reshape();
std::vector<cv::Mat> input_channels;
WrapInputLayer(&input_channels);
Preprocess(img, &input_channels);
net_->Forward();
/* Copy the output layer to a std::vector */
Blob<float>* output_layer = net_->output_blobs()[0];
const float* begin = output_layer->cpu_data();
const float* end = begin + output_layer->channels();
return std::vector<float>(begin, end);
}
/* Wrap the input layer of the network in separate cv::Mat objects
* (one per channel). This way we save one memcpy operation and we
* don't need to rely on cudaMemcpy2D. The last preprocessing
* operation will write the separate channels directly to the input
* layer. */
void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
Blob<float>* input_layer = net_->input_blobs()[0];
int width = input_layer->width();
int height = input_layer->height();
float* input_data = input_layer->mutable_cpu_data();
for (int i = 0; i < input_layer->channels(); ++i) {
cv::Mat channel(height, width, CV_32FC1, input_data);
input_channels->push_back(channel);
input_data += width * height;
}
}
void Classifier::Preprocess(const cv::Mat& img,
std::vector<cv::Mat>* input_channels) {
/* Convert the input image to the input image format of the network. */
cv::Mat sample;
if (img.channels() == 3 && num_channels_ == 1)
cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
else if (img.channels() == 4 && num_channels_ == 1)
cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
else if (img.channels() == 4 && num_channels_ == 3)
cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
else if (img.channels() == 1 && num_channels_ == 3)
cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
else
sample = img;
cv::Mat sample_resized;
if (sample.size() != input_geometry_)
cv::resize(sample, sample_resized, input_geometry_);
else
sample_resized = sample;
cv::Mat sample_float;
if (num_channels_ == 3)
sample_resized.convertTo(sample_float, CV_32FC3);
else
sample_resized.convertTo(sample_float, CV_32FC1);
cv::Mat sample_normalized;
cv::subtract(sample_float, mean_, sample_normalized);
/* This operation will write the separate BGR planes directly to the
* input layer of the network because it is wrapped by the cv::Mat
* objects in input_channels. */
cv::split(sample_normalized, *input_channels);
CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
== net_->input_blobs()[0]->cpu_data())
<< "Input channels are not wrapping the input layer of the network.";
}
int main(int argc, char** argv) {
if (argc != 6) {
std::cerr << "Usage: " << argv[0]
<< " deploy.prototxt network.caffemodel"
<< " mean.binaryproto labels.txt img.jpg" << std::endl;
return 1;
}
::google::InitGoogleLogging(argv[0]);
string model_file = argv[1];
string trained_file = argv[2];
string mean_file = argv[3];
string label_file = argv[4];
Classifier classifier(model_file, trained_file, mean_file, label_file);
string file = argv[5];
std::cout << "---------- Prediction for "
<< file << " ----------" << std::endl;
cv::Mat img = cv::imread(file, -1);
CHECK(!img.empty()) << "Unable to decode image " << file;
std::vector<Prediction> predictions = classifier.Classify(img);
/* Print the top N predictions. */
for (size_t i = 0; i < predictions.size(); ++i) {
Prediction p = predictions[i];
std::cout << std::fixed << std::setprecision(4) << p.second << " - \""
<< p.first << "\"" << std::endl;
}
}
#else
int main(int argc, char** argv) {
LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV.";
}
#endif // USE_OPENCV
CMakeLists.txt
find_package(OpenCV REQUIRED)
set(Caffe_DIR "/home/kezunlin/program/caffe-wy/build/install/share/Caffe") # caffe-wy caffe
# for CaffeConfig.cmake/ caffe-config.cmake
find_package(Caffe)
# offical caffe : There is no Caffe_INCLUDE_DIRS and Caffe_DEFINITIONS
# refinedet caffe: OK.
add_definitions(${Caffe_DEFINITIONS})
MESSAGE( [Main] " Caffe_INCLUDE_DIRS = ${Caffe_INCLUDE_DIRS}")
MESSAGE( [Main] " Caffe_DEFINITIONS = ${Caffe_DEFINITIONS}")
MESSAGE( [Main] " Caffe_LIBRARIES = ${Caffe_LIBRARIES}") # caffe
MESSAGE( [Main] " Caffe_CPU_ONLY = ${Caffe_CPU_ONLY}")
MESSAGE( [Main] " Caffe_HAVE_CUDA = ${Caffe_HAVE_CUDA}")
MESSAGE( [Main] " Caffe_HAVE_CUDNN = ${Caffe_HAVE_CUDNN}")
include_directories(${Caffe_INCLUDE_DIRS})
target_link_libraries(demo
${OpenCV_LIBS}
${Caffe_LIBRARIES}
)
run
ldd demo
if error occurs:
libcaffe.so.1.0.0 => not found
fix
vim .bashrc
# for caffe
export LD_LIBRARY_PATH=/home/kezunlin/program/caffe-wy/build/install/lib:$LD_LIBRARY_PATH
Reference
History
- 20180807: created.
- 20180822: update cmake-gui for caffe
Copyright
- Post author: kezunlin
- Post link: https://kezunlin.me/post/b90033a9/
- Copyright Notice: All articles in this blog are licensed under CC BY-NC-SA 3.0 unless stating additionally.
ubuntu 16.04源码编译和配置caffe详细教程 | Install and Configure Caffe on ubuntu 16.04的更多相关文章
- [Part 3] 在Ubuntu 16.04源码编译PCL 1.8.1支持VTK和QT
本文首发于个人博客https://kezunlin.me/post/137aa5fc/,欢迎阅读! Part-3: Install and Configure PCL 1.8.1 with vtk q ...
- [笔记] Ubuntu 18.04源码编译安装OpenCV 4.0流程
标准常规安装方法安装的OpenCV版本比较低,想尝鲜使用4.0版本,只好源码安装. 安装环境 OS:Ubuntu 18.04 64 bit 显卡:NVidia GTX 1080 CUDA:10.0 c ...
- ubuntu 14.04 源码编译postgresql
环境 ubuntu 14.04 桌面版 postgresql 源码下载链接,本教程是使用postgresql 9.3.4 进行编译的 http://www.postgresql.org/ftp/sou ...
- 编译Android 4.4.4 r1的源码刷Nexus 5手机详细教程
本文博客地址:http://blog.csdn.net/qq1084283172/article/details/54562606 网上关于编译Android源码的教程已经很多了,但是讲怎么编译And ...
- windows 10安装和配置caffe教程 | Install and Configure Caffe on windows 10
本文首发于个人博客https://kezunlin.me/post/1739694c/,欢迎阅读! Install and Configure Caffe on windows 10 Part 1: ...
- Ubuntu 16.04 源码编译安装PHP7+swoole
备注: Ubuntu 16.04 Server 版安装过程图文详解 Ubuntu16镜像地址: 链接:https://pan.baidu.com/s/1XTVS6BdwPPmSsF-cYF6B7Q 密 ...
- Ubuntu 16.04 源码编译安装PHP7
一.下载PHP7的最新版源码 php7.0.9 下载地址 http://php.net/get/php-7.0.9.tar.gz/from/a/mirror 二.解压 tar -zxf /tmp/p ...
- Ubuntu 16.04源码编译安装nginx 1.10.0
一.下载相关的依赖库 pcre 下载地址 http://120.52.73.43/jaist.dl.sourceforge.net/project/pcre/pcre/8.38/pcre-8.38.t ...
- ubuntu 14.04 源码编译mysql-5.7.17
环境为 Ubuntu 12.04 64 位的桌面版 编译的mysql 版本为 5.7.18 首先需要安装一下依赖包 sudo apt-get install libncurses5-dev cmake ...
随机推荐
- 使用jquery插件uploadfive、jcrop实现头像上传
1.html页面部分代码:(实现选着图片时,jcrop能够刷新图片) <script type="text/javascript"> $(function(){ $(& ...
- 一文读懂Java类加载机制
Java 类加载机制 Java 类加载机制详解. @pdai Java 类加载机制 类的生命周期 类的加载:查找并加载类的二进制数据 连接 验证:确保被加载的类的正确性 准备:为类的静态变量分配内存, ...
- javascript domAPI整理
对一般兼容性和特点做了标识(主要是ie8+) 节点类型 节点类型 节点值 标签节点(Element) 1 属性节点(Attr) 2 文本节点(Text) 3 CDATA节点(CDATASetion) ...
- 设计模式(八)Abstract Factory模式
抽象工厂的工作是将“抽象零件”组装为“抽象产品”.在抽象工厂模式中将会出现抽象工厂,它会将抽象零件组装为抽象产品.也就是说,我们并不关心零件的具体实现,而是只关心接口.我们仅适用该接口将零件组装起来成 ...
- Java基础(二)数据类型
数据类型主要分为基本类型和引用类型两大类. 一.基本类型 1.基本类型又分为数值类型和boolean类型, (1)数值类型包括浮点数类型.整数类型和字符类型 整型 ...
- requests+lxml+xpath爬取电影天堂
1.导入相应的包 import requests from lxml import etree 2.原始ur url="https://www.dytt8.net/html/gndy/dyz ...
- JavaScript随机生成布尔值
//方法一 var rand = Boolean(Math.round(Math.random())); conosole.log(rand) // 方法二: var arr = [true,fals ...
- Maven optional关键字透彻图解
写在前面 本来想写一篇「如何自定义Spring Boot Starter」,但是为了更好理解 Starter 的一些设计理念和其中的关键点,所以提前将一些细节内容单独提取出来讲解说明 在 Maven ...
- 一分钟带你了解JWT认证!
目录 一.JWT简介 二.JWT认证和session认证的区别 三.JWT认证流程 四.JWT组成 五.JWT使用场景 一.JWT简介 JSON Web Token(JWT)是一个开放的标准(RFC ...
- Android_Fragment栈操作 commit()问题分析
栈操作时遇到一个问题 getFragmentManager().beginTransaction() .replace(R.id.fl_container,bFragment) .addToBackS ...