数学题

令 \(A_n\) 为 \(2\times n\) 的墙壁放满块的方案数,考虑递推。

显然 \(A_0=1\),我们令对于 \(k<0\),\(A_k=0\) .

放直线型的块非常好递推:

此时答案即为 \(A_{n-1}+A_{n-2}\) .

接下来考虑放 L 型块的:

显然,两个 L 型块可以并成长方形:

但是也可以通过摆几个横着的块再合并:

所以此时答案为 \(2(A_{n-3}+A_{n-4}+\cdots+A_0)\) .

把两个加起来,得到

\[\large\begin{aligned}A_n&=A_{n-1}+A_{n-2}+2\left(\sum_{i=0}^{n-3}F_i\right)\\&=A_{n-1}+A_{n-2}+\sum_{i=0}^{n-3}A_i+\sum_{i=0}^{n-3}A_i\\&=\sum_{i=0}^{n-1}A_i+\sum_{i=0}^{n-3}A_i&\end{aligned}
\]

如果直接暴力转移每次是 \(O(n)\) 的,总复杂度也就是 \(O(n^2)\) 的,显然会 tle。

注意到这是静态区间求和,所以考虑前缀和。令 \(S_i=\sum\limits_{j=0}^iA_j\),递推式变为

\[\large A_n=S_{n-1}+S_{n-3}
\]

这个 \(S\) 可以在转移的时候递推求出来,这样就是 \(O(n)\) 的了,可以通过。

注意到这个式子里面很多 \(A_i\) 被反复加了,分别令 \(n=k\) 和 \(n=k+1\),得:

\[\large\begin{aligned}A_k&=\sum_{i=0}^{k-1}A_i+\sum_{i=0}^{k-3}A_i\\&=A_{k-1}+A_{k-2}+2A_{k-3}+\sum_{i=0}^{k-4}A_i\end{aligned}
\]
\[\large\begin{aligned}A_{k-4}&=\sum_{i=0}^{k-2}A_i+\sum_{i=0}^{k-4}A_i\\&=A_{k-2}+A_{k-3}+2\sum_{i=0}^{k-4}A_i\end{aligned}
\]

减一下,得到 \(A_k-A_{k-1}=A_{k-1}+A_{k-3}\),即 \(A_k=2A_{k-1}+A_{k-3}\) .

用这个式子递推即可。

题解 P1999【覆盖墙壁】的更多相关文章

  1. 洛谷 P1990 覆盖墙壁

    P1990 覆盖墙壁 题目描述 你有一个长为N宽为2的墙壁,给你两种砖头:一个长2宽1,另一个是L型覆盖3个单元的砖头.如下图: 0 0 0 00 砖头可以旋转,两种砖头可以无限制提供.你的任务是计算 ...

  2. 题解 洛谷P1990 覆盖墙壁

    DP康复训练题 原题:洛谷P1990 核心:递推/DP 题源应该是铺地砖,所以采用一摸一样的思路,只是有两种不同的方块 我们先用最最简单的方式尝试一下枚举当最后一行被填满的情况: 1.如果我们只用第一 ...

  3. 【题解】覆盖问题 BZOJ1052 HAOI2007 二分

    题目描述 某 人在山上种了N棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来,经过一番长久的思考,他决定用 3个LL的正方形塑料薄膜将小树遮起来.我 ...

  4. 贪心(qwq)习题题解

    贪心(qwq)习题题解 SCOI 题解 [ SCOI2016 美味 ] 假设已经确定了前i位,那么答案ans一定属于一个区间. 从高位往低位贪心,每次区间查找是否存在使此位答案为1的值. 比如6位数确 ...

  5. POJ3680:Intervals(离散化+最大流最小费用)

    Intervals Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 9320   Accepted: 4014 题目链接:ht ...

  6. 【JOI Camp 2015】IOIO卡片占卜——最短路

    题目 [题目描述]K 理事长是占卜好手,他精通各种形式的占卜.今天,他要用正面写着 `I` ,背面写着 `O` 的卡片占卜一下日本 IOI 国家队的选手选择情况.占卜的方法如下:1. 首先,选取五个正 ...

  7. Computer Vision_33_SIFT:PCA-SIFT A More Distinctive Representation for Local Image Descriptors——2004

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  8. Code[VS] 1022 覆盖 题解

    Code[VS] 1022 覆盖 题解  Hungary Algorithm 题目传送门:Code[VS] 1022 题目描述 Description 有一个N×M的单位方格中,其中有些方格是水塘,其 ...

  9. codevs3027线段覆盖2(DP)题解

    题目描述 Description 数轴上有n条线段,线段的两端都是整数坐标,坐标范围在0~1000000,每条线段有一个价值,请从n条线段中挑出若干条线段,使得这些线段两两不覆盖(端点可以重合)且线段 ...

随机推荐

  1. JavaScript与函数式编程

    JavaScript与函数式编程 绝大多数编程语言都会有函数的概念(或者说所有的?我不太确定),他们都可以做出类似的操作: function(x) { return x * x } 但是Javascr ...

  2. Blazor和Vue对比学习(进阶2.1.1):生命周期,基本理解和使用

    一.基本理解 首次接触"生命周期"这个名词,是比较晦涩的,Vue中又有生命周期钩子,而Blazor则是虚方法重写,容易蒙.所以,我尝试从初学者的角度来阐述一下. 1.我们在基础部分 ...

  3. ES6 - promise(1)

    今天决定对之前学过的一些前端的知识进行梳理和总结,因为最近都是独自承担项目的开发与搭建,所以先从前后端交互的第一线axios来梳理,复习axios首先一定要先复习promise对象. 什么是promi ...

  4. FTPClient处理中文乱码问题,实测通过了

    使用FTPClient 操作FTP时,遇到路径或文件名中文乱码问题:   其中的一种处理方式:   在new FTPClient()后,可以设置编码, ftpClient=new FTPClient( ...

  5. ForEach遍历集合、 集合容器

    ForEach遍历集合 foreach循环是一种更加简洁的for循环,也称增强for循环,能用于遍历数组或集合中的元素. 格式: for(容器元素类型 临时变量:容器变量){ 执行语句} 从上面格式可 ...

  6. javaweb获取客户端真实ip

    在安全性要求较高的web项目中,我们经常有这样的需求: 黑名单:禁止指定ip访问. 白名单:允许指定ip访问. 根据ip追踪恶意入侵系统者. 在java中我们通常可以这样获取客户端ip地址: requ ...

  7. 打字练习-编程语言关键字系列-java

    小编整理的java关键字,内容如下:abstract, assert, boolean, break, byte, case, catch, char, class, const, continue, ...

  8. SAP Smart Form 无法通过程序自定义默认打印机问题解决

    *&---------------------------------------------------------------------* *& Form FRM_SET_PRI ...

  9. WPF开发随笔收录-DataAnnotations实现数据校验(MVVM架构下)

    一.前言 在自己的项目中挺多地方需要涉及到数据验证的,初期的实现方式都是通过点击确定后再逐个验证数据是否符合要求,但这种方式会让后台代码变得很多很乱.于是就开始在网上需求好的解决方式,刚好看到了一个大 ...

  10. 为什么新的5G标准将为技术栈带来更低的 TCO

    ​ 摘要 新5G标准和边缘计算对低延迟的要求,给那些试图将一堆不同组件组装成一个不会出现故障且仍具有低延迟的高成本效益应用程序公司带来了严峻的挑战.事实上,这个问题非常严重,以至于需要重新考虑架构. ...