题目

有 \(X+Y+Z\) 个三元组 \((x[i],y[i],z[i])\),请你从每个三元组中挑数,并满足以下条件:

1、每个三元组中可以且仅可以选择一个数(即 \(x[i],y[i],z[i]\) 中的一个)

2、选择 \(x[i]\) 的三元组个数恰好为 \(X\)

3、选择 \(y[i]\) 的三元组个数恰好为 \(Y\)

4、选择 \(z[i]\) 的三元组个数恰好为 \(Z\) 问选出的数的和最大是多少

问选出的数的和最大是多少

数据规模

对于10%的数据满足,\(1<=X+Y+Z<=15\)

对于30%的数据满足,\(1<=X+Y+Z<=100\)

对于另外10%的数据满足,\(X=0\)

对于另外20%的数据满足,所有三元组中的 \(x[i]=0\)

对于另外20%的数据满足,\(1<=X+Y+Z<=100000\)

对于100%的数据满足,\(1<=X+Y+Z<=500000,0<=x[i],y[i],z[i]<=500000\)

分析

这题真妙哉!!

首先考虑 \(X = 0\) 时的贪心

显然先强制选所有 \(y[i]\)

然后按 \(z_i - y_i\) 从大到小排序,选前 \(Z\) 格就行了

然后考虑 \(X > 0\)

先强制选所有 \(x[i]\)

按 \(z_i - y_i\) 从大到小排序

枚举一个分界点

在这之前(包括本身)选 \(Z\) 个 \(z[i]\),按 \(z[i]-x[i]\) 从大到小选

在这之后选 \(Y\) 个 \(y[i]\),按 \(y[i]-x[i]\) 从大到小选

这题就可做了

当然我们显然不可能一直排序

所以我们可以用数据结构维护一下

吸口氧就过了

用桶排序即可

那我们怎样统计每次的答案呢

我们考虑每次下移临界点时,\(z\) 的选择就多了一个 \(z[i]-x[i]\),\(y\) 的选择就少了一个 \(y[i]-x[i]\)

且只会这样

那么我们用双指针挪动就行

但实现细节不是那么容易

特别是 \(z[i]-x[i]\) 或是 \(y[i]-x[i]\) 有多个的时候

就要特别讨论

所以我们还有顺便维护选取的数是桶一个单元中的第几个

\(Code\)

#include<cstdio>
#include<algorithm>
#define LL long long
using namespace std; const int N = 500005;
int X, Y, Z, Tz[N << 1], Ty[N << 1], Add;
struct node{int x, y, z;}a[N];
inline bool cmp(node a, node b){return (a.z - a.y) > (b.z - b.y);} int main()
{
freopen("triple.in", "r", stdin);
freopen("triple.out", "w", stdout);
scanf("%d%d%d", &X, &Y, &Z);
LL ans = 0, sum = 0;
for(register int i = 1; i <= X + Y + Z; i++)
scanf("%d%d%d", &a[i].x, &a[i].y, &a[i].z), sum += a[i].x, Add = max(Add, max(a[i].x, max(a[i].y, a[i].z)));
sort(a + 1, a + X + Y + Z + 1, cmp); int lz, rz, sz, ly, ry, sy;
lz = ly = Add << 1, rz = ry = 0;
for(register int i = 1; i <= Z; i++)
Tz[a[i].z - a[i].x + Add]++, lz = min(lz, a[i].z - a[i].x + Add), rz = max(rz, a[i].z - a[i].x + Add), sum += a[i].z - a[i].x;
sz = 1;
for(register int i = Z + 1; i <= X + Y + Z; i++)
Ty[a[i].y - a[i].x + Add]++, ly = min(ly, a[i].y - a[i].x + Add), ry = max(ry, a[i].y - a[i].x + Add);
for(register int i = ry, s = 0; i >= ly; i--)
if (Ty[i])
{
s += Ty[i], sum += 1LL * (i - Add) * Ty[i];
if (s >= Y){ly = i, sy = Ty[i] - (s - Y), sum -= 1LL * (i - Add) * (s - Y); break;}
} ans = sum;
for(register int i = Z + 1; i <= X + Z; i++)
{
int del = a[i].z - a[i].x + Add;
Tz[del]++;
if (del >= lz)
{
sum += (del - Add) - (lz - Add);
if (del > rz) rz = del;
if (sz == Tz[lz])
{
++lz, sz = 1;
while (lz < rz && !Tz[lz]) ++lz;
}
else ++sz;
} del = a[i].y - a[i].x + Add;
if (del >= ly)
{
sum -= del - Add;
if (sy >= Ty[ly])
{
--ly, sy = 1;
while (ly && !Ty[ly]) --ly;
sum += ly - Add;
}
else sum += ly - Add, ++sy;
}
Ty[del]--;
ans = max(ans, sum);
}
printf("%lld\n", ans);
}

JZOJ 5432. 【NOIP2017提高A组集训10.28】三元组的更多相关文章

  1. 5432. 【NOIP2017提高A组集训10.28】三元组

    题目 题目大意 给你\(X+Y+Z\)个三元组\((x_i,y_i,z_i)\). 然后选\(X\)个\(x_i\),选\(Y\)个\(y_i\),选\(Z\)个\(z_i\). 每个三元组只能选择其 ...

  2. [JZOJ 5437] [NOIP2017提高A组集训10.31] Sequence 解题报告 (KMP)

    题目链接: http://172.16.0.132/senior/#main/show/5437 题目: 题解: 发现满足上述性质并且仅当A序列的子序列的差分序列与B序列的差分序列相同 于是我们把A变 ...

  3. 5433. 【NOIP2017提高A组集训10.28】图

    题目描述 Description 有一个n个点A+B条边的无向连通图,有一变量x,每条边的权值都是一个关于x的简单多项式,其中有A条边的权值是k+x,另外B条边的权值是k-x,如果只保留权值形如k+x ...

  4. 【JZOJ5428】【NOIP2017提高A组集训10.27】查询

    题目 给出一个长度为n的序列a[] 给出q组询问,每组询问形如\(<x,y>\),求a序列的所有区间中,数字x的出现次数与数字y的出现次数相同的区间有多少个. 分析 我们可以维护一个前缀和 ...

  5. 【JZOJ5439】【NOIP2017提高A组集训10.31】Calculate

    题目 分析 对于\[\sum_{i=1}^{n}\lfloor\dfrac{T-B_i}{A_i}\rfloor\] 我们考虑拆开处理,得到 \[\sum_{i=1}^{n}(\lfloor\dfra ...

  6. 【JZOJ5430】【NOIP2017提高A组集训10.27】图

    题目 有一个n个点的无向图,给出m条边,每条边的信息形如\(<x,y,c,r>\) 给出q组询问形如\(<u,v,l,r>\) 接下来解释询问以及边的意义 询问表示,一开始你在 ...

  7. 【JZOJ5434】【NOIP2017提高A组集训10.30】Matrix

    题目 分析 假设答案为ans, 发现\[k=\sum_{i=1}^{min(n,k)}\lfloor \dfrac{ans}{i} \rfloor\] 于是可以对ans进行二分, 用分块来求出上面的式 ...

  8. 【NOIP2017提高A组集训10.21】Fantasy

    题目 Y sera 陷入了沉睡,幻境中它梦到一个长度为N 的序列{Ai}. 对于这个序列的每一个子串,定义其幻境值为这个子串的和,现在Y sera 希望选择K 个不同的子串并使得这K 个子串的幻境值之 ...

  9. JZOJ 【NOIP2017提高A组模拟9.14】捕老鼠

    JZOJ [NOIP2017提高A组模拟9.14]捕老鼠 题目 Description 为了加快社会主义现代化,建设新农村,农夫约(Farmer Jo)决定给农庄里的仓库灭灭鼠.于是,猫被农夫约派去捕 ...

  10. JZOJ 【NOIP2016提高A组集训第16场11.15】SJR的直线

    JZOJ [NOIP2016提高A组集训第16场11.15]SJR的直线 题目 Description Input Output Sample Input 6 0 1 0 -5 3 0 -5 -2 2 ...

随机推荐

  1. 解决linux mint内置无线网卡失效问题

    前言 同学安装了linux mint,但是内置的无线网卡失效,只能通过有线网卡连接,经过查询得到不是缺少驱动的问题,是内核不支持 解决办法 sudo apt install linux-generic ...

  2. 在实际应用中联合体union的妙用

    关键字union,又称为联合体.共用体,联合体的声明和结构体类似,但是它的行为方式又和结构体不同,这里的行为方式主要指的是其在内存中的体现,结构体中的成员每一个占据不同的内存空间,而联合体中的所有成员 ...

  3. 【每日一题】【链表.next.next判空条件】141. 环形链表/NC4 判断链表中是否有环-211120/220123

    给你一个链表的头节点 head ,判断链表中是否有环. 如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环. 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链 ...

  4. [百度营]AI studio用法提醒(自用)

    持久化安装 需要设置持久化路径: !mkdir /home/aistudio/external-libraries !pip install beautifulsoup4 -t /home/aistu ...

  5. Android-helloword

    环境早已配置完毕,就是后来选择API的时候出现了一点问题,唉,追求时尚,选择最新版本的API,结果就悲剧了,跑不起来,也找不到原因.后来换成Android 4.22 17API Level就行了... ...

  6. 静态文件配置 django连接MySQL django模型层初识 ORM基本语句

    目录 静态文件配置 1. 问题描述 2. 静态文件 3. 资源访问 form表单属性补充 action method 请求方法 get请求 post请求 views层 request对象 reques ...

  7. webShell攻击及防御

    最近公司项目也是经常被同行攻击,经过排查,基本定位都是挂马脚本导致,所以针对webShell攻击做一下记录. 首先简单说下 什么是webShell? 利用文件上传,上传了非法可以执行代码到服务器,然后 ...

  8. 【Java面试指北】反射(1) 初识反射

    如果你被问到:什么是反射?为什么需要反射.以及反射的应用?你会如何回答呢? 本篇会带大家初识反射,了解反射概念和基本应用.反射的原理以及深入源码的探究将会在后面几篇介绍. 一.什么是反射? 要理解什么 ...

  9. Django TypeError at /login/ 'bool' object is not callable

    代码: def login(request): if request.POST: username = request.POST.get('username') password = request. ...

  10. vue引入高德地图

    一,下载 npm install vue-amap --save 二,main.js文件内引入 import VueAMap from 'vue-amap' Vue.use(VueAMap); // ...