最长不下降子序列


题目大意:

给定一个长度为 N 的整数序列:A\(_{1}\),A\(_{2}\),⋅⋅⋅,A\(_{N}\)。

现在你有一次机会,将其中连续的 K 个数修改成任意一个相同值。

请你计算如何修改可以使修改后的数列的最长不下降子序列最长,请输出这个最长的长度。

最长不下降子序列是指序列中的一个子序列,子序列中的每个数不小于在它之前的数。


题目思路:

我们考虑这样两个数组,f[ ],g[ ],分别表示以i为结尾的最长不下降子序列长度和以i为开始的最长子序列长度,那我们的答案如果在不考虑修改k个数这个条件时,我们的答案就是:f[i]+g[i]-1;

当我们再去考考虑修改k个连续数这个条件时,答案就变成了:max(\(\sum_{i = n}^{i-k>=1}\)f[i-k]+k+g[i],k);



这个答案可以被看为由三部分组成:f[i-k]以i-k为结尾 + 修改后的k个数 + g[i]以i为开始



所以在实现上我们考虑用权值线段树来优化寻找最长不下降子序列这个过程

权值线段树维护的是以离散化后的点为(结束/开始)的最长不下降子序列长度

先将原数据去重+离散化

然后先处理f[i] =query(1,1,tot,1,a[i])+1 ,每次查询query(1,1,tot,1,a[i]),查询在他之前的最长子序列,之后将f[i]插入a[i]的位置



例如:a[i]离散化以后为3,那我们此时的查询即为query(1,1,tot,1,3)

这样我们就是查询从1到3的最长不下降子序列,修改也是同理,将3的值改为max(val,f[i])



之后重建线段树,倒着处理g[i]

几乎是同样的方法,只不过在这个同时处理一下ans = max(ans,f[i-k]+k+g[i]);


代码实现:

# include<bits/stdc++.h>
using namespace std;
const int N = 1e5+10;
#define ls u<<1
#define rs u<<1|1
int f[N],g[N];//f[]--以i为结尾的最长...,g[]--以i为开始的最长...
int a[N];
int n,k; struct seg{
int maxn[4*N];
void pushup(int u){
maxn[u] = max(maxn[ls],maxn[rs]);
}
void build(int u,int l,int r){
if(l == r){
maxn[u] = 0;
return;
}
int mid = l+r>>1;
build(ls,l,mid);
build(rs,mid+1,r);
pushup(u);
} void modify(int u,int l,int r,int pos,int val){
if(l == r){
maxn[u] = max(maxn[u],val);
return;
}
int mid = l+r>>1;
if(pos<=mid) modify(ls,l,mid,pos,val);
else modify(rs,mid+1,r,pos,val);
pushup(u);
}
int query(int u,int l,int r,int L,int R){
if(l==L&&r==R){
return maxn[u];
}
int mid = l+r>>1;
if(R<=mid) return query(ls,l,mid,L,R);
else if(L>mid) return query(rs,mid+1,r,L,R);
else return max(query(ls,l,mid,L,mid),query(rs,mid+1,r,mid+1,R));
}
}tr;
int b[N],tot;
int find(int u){
int l = 1,r = tot;
int ans;
while(l<r){
int mid = l+r>>1;
if(b[mid] >= u){
r = mid;
}
else l = mid+1;
}
return l;
} int main(){
cin>>n>>k;
for(int i = 1;i <= n;++i) {
cin>>a[i];
b[i] = a[i];
}
sort(b+1,b+1+n);
tot = 1;
for(int i = 2;i <= n;++i)//离散化+去重
{
if(b[i] != b[tot]){
b[++tot] = b[i];
}
} for(int i = 1;i <= n;++i)
{
a[i] = find(a[i]);
}
tr.build(1,1,tot);//处理f[i]
for(int i = 1;i <= n-k;++i){
f[i] = tr.query(1,1,tot,1,a[i])+1;
tr.modify(1,1,tot,a[i],f[i]);
} tr.build(1,1,tot);//处理完f[i]后重建线段树来啊处理g[i]
int ans = 0;
for(int i = n;i-k>=1;--i){
ans = max(ans,f[i-k]+k+tr.query(1,1,tot,a[i-k],tot));
g[i] = tr.query(1,1,tot,a[i],tot)+1;
tr.modify(1,1,tot,a[i],g[i]); }
cout<<ans<<endl; return 0;
}

最长不下降子序列(线段树优化dp)的更多相关文章

  1. BZOJ2090: [Poi2010]Monotonicity 2【线段树优化DP】

    BZOJ2090: [Poi2010]Monotonicity 2[线段树优化DP] Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k]. ...

  2. [AGC011F] Train Service Planning [线段树优化dp+思维]

    思路 模意义 这题真tm有意思 我上下楼梯了半天做出来的qwq 首先,考虑到每K分钟有一辆车,那么可以把所有的操作都放到模$K$意义下进行 这时,我们只需要考虑两边的两辆车就好了. 定义一些称呼: 上 ...

  3. Codeforces Round #426 (Div. 2) D 线段树优化dp

    D. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...

  4. 【bzoj3939】[Usaco2015 Feb]Cow Hopscotch 动态开点线段树优化dp

    题目描述 Just like humans enjoy playing the game of Hopscotch, Farmer John's cows have invented a varian ...

  5. POJ 2376 Cleaning Shifts (线段树优化DP)

    题目大意:给你很多条线段,开头结尾是$[l,r]$,让你覆盖整个区间$[1,T]$,求最少的线段数 题目传送门 线段树优化$DP$裸题.. 先去掉所有能被其他线段包含的线段,这种线段一定不在最优解里 ...

  6. 洛谷$P2605\ [ZJOI2010]$基站选址 线段树优化$dp$

    正解:线段树优化$dp$ 解题报告: 传送门$QwQ$ 难受阿,,,本来想做考试题的,我还造了个精妙无比的题面,然后今天讲$dp$的时候被讲到了$kk$ 先考虑暴力$dp$?就设$f_{i,j}$表示 ...

  7. D - The Bakery CodeForces - 834D 线段树优化dp···

    D - The Bakery CodeForces - 834D 这个题目好难啊,我理解了好久,都没有怎么理解好, 这种线段树优化dp,感觉还是很难的. 直接说思路吧,说不清楚就看代码吧. 这个题目转 ...

  8. 4.11 省选模拟赛 序列 二分 线段树优化dp set优化dp 缩点

    容易想到二分. 看到第一个条件容易想到缩点. 第二个条件自然是分段 然后让总和最小 容易想到dp. 缩点为先:我是采用了取了一个前缀最小值数组 二分+并查集缩点 当然也是可以直接采用 其他的奇奇怪怪的 ...

  9. Codeforces 1603D - Artistic Partition(莫反+线段树优化 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 学 whk 时比较无聊开了道题做做发现是道神题( 介绍一种不太一样的做法,不观察出决策单调性也可以做. 首先一个很 trivial 的 o ...

随机推荐

  1. 一个监控工具monit

    最近看了一个问题,monit监控在读取配置文件之后,访问的文件是残留在容器中的,导致认为服务异常,其实一开始容器启动,并没有对应的服务. [root@10-36-235-119.fin-wealth- ...

  2. 使用Python的selenium库制作脚本,支持后台运行

    本文介绍如何使用Python的selenium库制作脚本.概念:       Selenium是一个用于测试网站的自动化测试工具,支持各种浏览器包括Chrome.Firefox.Safari等主流界面 ...

  3. HTML <option> 标签的属性:selected ; disabled ; label ; value;

    HTML <option> 标签的属性:selected ;  disabled ; label ; value; 1. selected="selected" sel ...

  4. Linus命令

    参考: https://blog.csdn.net/weixin_44191814/article/details/120091363 vim编辑器 ## Vim基本模式 [对文件进行操作]vim 文 ...

  5. scp复制发送文件夹到其他服务器上

    简述scp: scp是secure copy的简写,是linux系统下基于ssh登陆进行安全的远程文件拷贝命令. 写法: scp [可选参数] 登录名@地址:源路径  目标路径. 举例:scp -r ...

  6. 状态 :睡眠中,进程ID:13431,yum提示Another app is currently holding the yum lock; waiting for it to exit...

    问题描述: 今天想在虚拟机上重新安装docker然后使用到yum命令报错: 解决办法: [root@localhost ~]# rm -f /var/run/yum.pid 然后重新运行刚才的yum命 ...

  7. Makefile 文件的编写

    目录 目录 Makefile 编写规则 Makefile 编写规则 生成的目标文件:依赖文件 生成目标文件所需执行的动作(注:命令行前需加Tab推进) 例: VPATH=inc src main:ma ...

  8. KingbaseES 数据库连接断开问题排查思路

    用户在使用数据库过程中,经常会发现如果会话空闲一段时间,会话有可能断开,需要重连.这个问题影响因素很多,包括数据库参数设置.操作系统参数.防火墙等.以下介绍KingbaseES针对该问题的排查思路. ...

  9. python3实现:进程遇Error定时重启

    import os import time # 停止HFish def stopHFish(): # while True: try: # 找到HFish进程号 HFish_id = int(os.p ...

  10. Twikoo私有化部署教程--迁移腾讯云

    目录 备份数据 私有化部署 创建容器 导入数据 重新配置twikoo面板设置 引入前端CDN Nginx https反代http 作者:小牛呼噜噜 | https://xiaoniuhululu.co ...