mxnet60分钟入门Gluon教程代码下载,适合做过深度学习的人使用。入门教程地址:
https://beta.mxnet.io/guide/getting-started/crash-course/index.html
mxnet安装方法:pip install mxnet

1 在mxnet中使用ndarray处理数据

ndarray类似numpy,在mxnet下通过ndarray处理数据,ndarry类似与numpy。

# pip install -U mxnet 安装mxnet库
# 如
from mxnet import nd
# jupyter 多行输出
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

Get started

基本操作

# 建立2行3列的矩阵
nd.array(((1,2,3),(5,6,7)))
[[1. 2. 3.]
[5. 6. 7.]]
<NDArray 2x3 @cpu(0)>
# 建立2行3列的矩阵,用1填充
x = nd.ones((2,3))
x
[[1. 1. 1.]
[1. 1. 1.]]
<NDArray 2x3 @cpu(0)>
# 建立2行3列的矩阵,用随机数填充
y = nd.random.uniform(-1,1,(2,3))
y
[[0.09762704 0.18568921 0.43037868]
[0.6885315 0.20552671 0.71589124]]
<NDArray 2x3 @cpu(0)>
# 建立2行3列的矩阵,用2.0填充
x = nd.full((2,3), 2.0)
x
[[2. 2. 2.]
[2. 2. 2.]]
<NDArray 2x3 @cpu(0)>
# 查看变量x的维度,大小,类型
(x.shape, x.size, x.dtype)
((2, 3), 6, numpy.float32)

Operations

运算

# 对应元素相乘
x * y
[[0.19525409 0.37137842 0.86075735]
[1.377063 0.41105342 1.4317825 ]]
<NDArray 2x3 @cpu(0)>
# 返回e的y幂次方
y.exp()
[[1.1025515 1.204048  1.5378398]
[1.9907899 1.2281718 2.0460093]]
<NDArray 2x3 @cpu(0)>
# 将y转置后进行x,y矩阵乘法
nd.dot(x, y.T)
[[1.4273899 3.219899 ]
[1.4273899 3.219899 ]]
<NDArray 2x2 @cpu(0)>

indexing

切片

# 读取第2第3个数的值,nd序号从0开始
y[1,2]
[0.71589124]
<NDArray 1 @cpu(0)>
# 读取第2列到第3列的值
y[:,1:3]
[[0.18568921 0.43037868]
[0.20552671 0.71589124]]
<NDArray 2x2 @cpu(0)>
# 读取第2列到第3列的值,并将赋值为4
y[:,1:3] = 4
y
[[0.09762704 4.         4.        ]
[0.6885315 4. 4. ]]
<NDArray 2x3 @cpu(0)>

Converting between MXNet NDArray and NumPy

mxnet的ndarry与numpy互相转换

# 将x转换为numpy格式
a = x.asnumpy()
(type(a), a)
(numpy.ndarray, array([[2., 2., 2.],
[2., 2., 2.]], dtype=float32))
# 将numpy数组转换ndarray格式
nd.array(a)
[[2. 2. 2.]
[2. 2. 2.]]
<NDArray 2x3 @cpu(0)>

2 通过mxnet的Gluon模块建立网络

Gluon包是MXNet的高级封装接口,易于使用,同时保持了底层API的大部分灵活性。Gluon包为深入学习提供了一个清晰、简洁、简单的API。它使得在不牺牲训练速度的情况下,使得建立和训练深度学习模型更加容易。

from mxnet import nd
# 载入gluon包
from mxnet.gluon import nn

Create your neural network’s first layer

# 建立输出节点为2的全连接层(dense层,类似keras)
layer = nn.Dense(2)
layer
Dense(None -> 2, linear)
# 使用默认的方法初始权重
layer.initialize()
# 生成3行4列的矩阵
x = nd.random.uniform(-1,1,(3,4))
# 输入x到layer层
layer(x)
[[ 0.0009278  -0.00674768]
[-0.02683341 0.00671751]
[ 0.00798804 0.02131375]]
<NDArray 3x2 @cpu(0)>
# 打印权重数据
layer.weight.data()
[[-0.01631819 -0.00312688  0.0408415   0.04370362]
[ 0.00404529 -0.0028032 0.00952624 -0.01501013]]
<NDArray 2x4 @cpu(0)>

Chain layers into a neural network

# 建立一个Sequential序贯模型
# nn.Sequential用法类似与nn.Dense,但都是nn.Block的子类
net = nn.Sequential()
# Add a sequence of layers.
# lenet,用到了卷积层,池化层,全连接层
net.add(# Similar to Dense, it is not necessary to specify the input channels
# by the argument `in_channels`, which will be automatically inferred
# in the first forward pass. Also, we apply a relu activation on the
# output. In addition, we can use a tuple to specify a non-square
# kernel size, such as `kernel_size=(2,4)`
nn.Conv2D(channels=6, kernel_size=5, activation='relu'),
# One can also use a tuple to specify non-symmetric pool and stride sizes
nn.MaxPool2D(pool_size=2, strides=2),
nn.Conv2D(channels=16, kernel_size=3, activation='relu'),
nn.MaxPool2D(pool_size=2, strides=2),
# The dense layer will automatically reshape the 4-D output of last
# max pooling layer into the 2-D shape: (x.shape[0], x.size/x.shape[0])
nn.Dense(120, activation="relu"),
nn.Dense(84, activation="relu"),
nn.Dense(10))
net
Sequential(
(0): Conv2D(None -> 6, kernel_size=(5, 5), stride=(1, 1), Activation(relu))
(1): MaxPool2D(size=(2, 2), stride=(2, 2), padding=(0, 0), ceil_mode=False, global_pool=False, pool_type=max, layout=NCHW)
(2): Conv2D(None -> 16, kernel_size=(3, 3), stride=(1, 1), Activation(relu))
(3): MaxPool2D(size=(2, 2), stride=(2, 2), padding=(0, 0), ceil_mode=False, global_pool=False, pool_type=max, layout=NCHW)
(4): Dense(None -> 120, Activation(relu))
(5): Dense(None -> 84, Activation(relu))
(6): Dense(None -> 10, linear)
)
# 初始化网络
net.initialize()
# Input shape is (batch_size, color_channels, height, width)
x = nd.random.uniform(shape=(4,1,28,28))
y = net(x)
y.shape
(4, 10)
# 输出第一层权重的维度以及第6层偏置的维度
(net[0].weight.data().shape, net[5].bias.data().shape)
((6, 1, 5, 5), (84,))

Create a neural network flexibly

通过nn.Block创建一个更加灵活的神经网络结构,主要有两部分:

  • __ init __ create the layers 创建层
  • forward define the forward function 确定前向传播层函数功能
class MixMLP(nn.Block):
def __init__(self, **kwargs):
# Run `nn.Block`'s init method
super(MixMLP, self).__init__(**kwargs)
self.blk = nn.Sequential()
self.blk.add(nn.Dense(3, activation='relu'),
nn.Dense(4, activation='relu'))
self.dense = nn.Dense(5)
def forward(self, x):
y = nd.relu(self.blk(x))
print(y)
return self.dense(y) net = MixMLP()
net
MixMLP(
(blk): Sequential(
(0): Dense(None -> 3, Activation(relu))
(1): Dense(None -> 4, Activation(relu))
)
(dense): Dense(None -> 5, linear)
)
# 初始化网络
net.initialize()
x = nd.random.uniform(shape=(2,2))
net(x)
[[0. 0. 0. 0.]
[0. 0. 0. 0.]]
<NDArray 2x4 @cpu(0)> [[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]]
<NDArray 2x5 @cpu(0)>
# 打印权重
net.blk[1].weight.data()
[[-0.02634858  0.05334064  0.02748809]
[ 0.06669661 -0.01711474 0.01647211]
[-0.04485548 0.00594983 -0.06654498]
[ 0.04964591 -0.06058505 0.03413684]]
<NDArray 4x3 @cpu(0)>

3 训练神经网络

本节我们将导入数据,建立网络模型,并进行训练。最后通过matplotlib进行绘图和基准测试benchmarking

# Uncomment the following line if matplotlib is not installed.
# !pip install matplotlib from mxnet import nd, gluon, init, autograd
from mxnet.gluon import nn
from mxnet.gluon.data.vision import datasets, transforms
from IPython import display
import matplotlib.pyplot as plt
import time

Get data

手写数字mnist数据集是深度学习中最常用的数据集之一。但要得到99%的准确度太简单了。这里我们使用了一个类似但稍微复杂的数据集,叫做FashionMNIST。目标不再是对数字进行分类,而是对服装类型进行分类。数据集可以通过Gluon的data.vision.datases模块自动下载。

mnist_train = datasets.FashionMNIST(train=True)
X, y = mnist_train[0]
#FashioniMMIST图像为28*28d的灰度图,y为类别标签
('X shape: ', X.shape, 'X dtype', X.dtype, 'y:', y)
('X shape: ', (28, 28, 1), 'X dtype', numpy.uint8, 'y:', 2)
# text_labels为分类名
text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
# 提取前十个数据
X, y = mnist_train[0:10]
# plot images
# 以png格式显示图片
display.set_matplotlib_formats('png')
_, figs = plt.subplots(1, X.shape[0], figsize=(15, 15))
for f,x,yi in zip(figs, X,y):
# 3D->2D by removing the last channel dim
f.imshow(x.reshape((28,28)).asnumpy())
ax = f.axes
ax.set_title(text_labels[int(yi)])
ax.title.set_fontsize(14)
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show();

为了将图像输入Gulon模型,我们用ToTensor将图像转换为浮点数据,同时对其进行标准化,标准化均值和方差分别为0.13和0.31

transformer = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(0.13, 0.31)])
mnist_train = mnist_train.transform_first(transformer)

为了使得训练效果更好,我们将打乱数据,同时设定num_workers=4即四个线程来设置读取数据的进程数,目的是:用多进程加速数据的读取

batch_size = 256
train_data = gluon.data.DataLoader(
mnist_train, batch_size=batch_size, shuffle=True, num_workers=4)

返回的train_data是一个包含图像和其对应标签的iterable object

# 打印数据
for data, label in train_data:
print(data.shape, label.shape)
break
(256, 1, 28, 28) (256,)

最后我们创建验证集数据

mnist_valid = gluon.data.vision.FashionMNIST(train=False)
valid_data = gluon.data.DataLoader(
mnist_valid.transform_first(transformer),
batch_size=batch_size, num_workers=4)

Define the model

我们建立一个模型,用常用的Xavier法来初始化

net = nn.Sequential()
net.add(nn.Conv2D(channels=6, kernel_size=5, activation='relu'),
nn.MaxPool2D(pool_size=2, strides=2),
nn.Conv2D(channels=16, kernel_size=3, activation='relu'),
nn.MaxPool2D(pool_size=2, strides=2),
nn.Flatten(),
nn.Dense(120, activation="relu"),
nn.Dense(84, activation="relu"),
nn.Dense(10))
net.initialize(init=init.Xavier())
# 定义loss
softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()
# 定义训练器,设定学习率为0.1
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.1})

Training

# 我们创造一个辅助函数来计算精度
def acc(output, label):
# output: (batch, num_output) float32 ndarray
# label: (batch, ) int32 ndarray
# asscalar()表示返回值的标量
return (output.argmax(axis=1) == label.astype('float32')).mean().asscalar()
# 训练网络2个epochs
for epoch in range(2):
train_loss, train_acc, valid_acc = 0., 0., 0.
tic = time.time()
for data, label in train_data:
# forward + backward
with autograd.record():
output = net(data)
loss = softmax_cross_entropy(output, label)
loss.backward()
# update parameters
trainer.step(batch_size)
# calculate training metrics
# 计算loss
train_loss += loss.mean().asscalar()
# 计算acc
train_acc += acc(output, label)
# calculate validation accuracy
for data, label in valid_data:
valid_acc += acc(net(data), label)
print("Epoch %d: loss %.3f, train acc %.3f, test acc %.3f, in %.1f sec" % (
epoch, train_loss/len(train_data), train_acc/len(train_data),
valid_acc/len(valid_data), time.time()-tic))
Epoch 0: loss 0.730, train acc 0.728, test acc 0.812, in 18.5 sec
Epoch 1: loss 0.463, train acc 0.828, test acc 0.856, in 18.6 sec

Save the model

# 保存模型参数
net.save_parameters('net.params')

载入模型进行推理

Prerequisites

from mxnet import nd
from mxnet import gluon
from mxnet.gluon import nn
from mxnet.gluon.data.vision import datasets, transforms
from IPython import display
import matplotlib.pyplot as plt
# 导入网络结构
net = nn.Sequential()
net.add(nn.Conv2D(channels=6, kernel_size=5, activation='relu'),
nn.MaxPool2D(pool_size=2, strides=2),
nn.Conv2D(channels=16, kernel_size=3, activation='relu'),
nn.MaxPool2D(pool_size=2, strides=2),
nn.Flatten(),
nn.Dense(120, activation="relu"),
nn.Dense(84, activation="relu"),
nn.Dense(10))
# 导入模型
net.load_parameters('net.params')

Predict

# 设置训练数据的处理信息
transformer = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(0.13, 0.31)])
# 图像预测
mnist_valid = datasets.FashionMNIST(train=False)
X, y = mnist_valid[:10]
preds = []
for x in X:
x = transformer(x).expand_dims(axis=0)
pred = net(x).argmax(axis=1)
preds.append(pred.astype('int32').asscalar())
# 可视化预测结果
_, figs = plt.subplots(1, 10, figsize=(15, 15))
text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
display.set_matplotlib_formats('png')
for f,x,yi,pyi in zip(figs, X, y, preds):
f.imshow(x.reshape((28,28)).asnumpy())
ax = f.axes
ax.set_title(text_labels[yi]+'\n'+text_labels[pyi])
ax.title.set_fontsize(14)
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show();

Predict with models from Gluon model zoo

from mxnet.gluon.model_zoo import vision as models
from mxnet.gluon.utils import download
from mxnet import image
# 从预训练的Gluon模型预测图像
net = models.resnet50_v2(pretrained=True)
# 获得标签文件
url = 'http://data.mxnet.io/models/imagenet/synset.txt'
fname = download(url)
with open(fname, 'r') as f:
text_labels = [' '.join(l.split()[1:]) for l in f]
# 随机下载狗的文件
url = 'https://upload.wikimedia.org/wikipedia/commons/thumb/b/b5/\
Golden_Retriever_medium-to-light-coat.jpg/\
365px-Golden_Retriever_medium-to-light-coat.jpg'
fname = download(url)
x = image.imread(fname)
# 将获得的图像变为224大小
x = image.resize_short(x, 256)
x, _ = image.center_crop(x, (224,224))
plt.imshow(x.asnumpy())
plt.show();

# 设置数据处理方式
def transform(data):
data = data.transpose((2,0,1)).expand_dims(axis=0)
rgb_mean = nd.array([0.485, 0.456, 0.406]).reshape((1,3,1,1))
rgb_std = nd.array([0.229, 0.224, 0.225]).reshape((1,3,1,1))
return (data.astype('float32') / 255 - rgb_mean) / rgb_std
# 结果分类,并输出top5结果
prob = net(transform(x)).softmax()
idx = prob.topk(k=5)[0]
for i in idx:
i = int(i.asscalar())
print('With prob = %.5f, it contains %s' % (
prob[0,i].asscalar(), text_labels[i]))
With prob = 0.98240, it contains golden retriever
With prob = 0.00809, it contains English setter
With prob = 0.00262, it contains Irish setter, red setter
With prob = 0.00223, it contains cocker spaniel, English cocker spaniel, cocker
With prob = 0.00177, it contains Labrador retriever

[python] mxnet60分钟入门Gluon教程的更多相关文章

  1. Python 30分钟入门指南

    Python 30分钟入门指南 为什么 OIer 要学 Python? Python 语言特性简洁明了,使用 Python 写测试数据生成器和对拍器,比编写 C++ 事半功倍. Python 学习成本 ...

  2. 转载:Python十分钟入门

    Python十分钟入门:http://python.jobbole.com/23425/

  3. python 10分钟入门pandas

    本文是对pandas官方网站上<10 Minutes to pandas>的一个简单的翻译,原文在这里.这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook .习惯 ...

  4. Python 30分钟入门——数据类型 and 控制结构

    Python是一门脚本语言,我也久闻大名,但正真系统的接触学习是在去年(2013)年底到今年(2014)年初的时候.不得不说的是Python的官方文档相当齐全,如果你是在Windows上学习Pytho ...

  5. Python十分钟入门

    [简介] Python是一种动态解释型的编程语言.Python可以在Windows.UNIX.MAC等多种操作系统上使用,也可以在Java..NET开发平台上使用. [特点] 1. Python使用C ...

  6. python 三分钟入门

    1.Python环境配置(2.7版本): Python官网:https://www.python.org/ Pycharm官网 http://www.jetbrains.com/pycharm/dow ...

  7. Python 30分钟入门——数据类型 &amp; 控制结构

    Python是一门脚本语言,我也久闻大名,但正真系统的接触学习是在去年(2013)年底到今年(2014)年初的时候.不得不说的是Python的官方文档相当齐全,假设你是在Windows上学习Pytho ...

  8. Python 30分钟快速入门指南

    学习地址 中文版:Python 30分钟入门指南 英文版:Learn X in Y minutes 学习时间 2019/03/10 19:00 - 19:32,多用了2分钟.

  9. Objective-C 30分钟入门教程

    Objective-C 30分钟入门教程 我第一次看OC觉得这个语言的语法有些怪异,为什么充满了@符号,[]符号,函数调用没有()这个,但是面向对象的高级语言也不外乎类,接口,多态,封装,继承等概念. ...

随机推荐

  1. IDEA中如何导入jar包、IDEA中找不到对应类改怎样解决?(详细图解过程)

    今天突然心血来潮.用IDEA运行之前用eclipse编写的项目.发现遇到了一些bug,现在习惯了使用maven管理项目的依赖.一时间忘记了怎样将jar包导入项目中.特此记录一下 文章目录 1.未加入j ...

  2. 在vue中_this和this的区别

    _this只是一个变量名,this代表父函数,如果在子函数还用this,this的指 向就变成子函数了,_this就是用来存储指向的 普通函数中的this表示调用此函数时的对象,箭头函数里面的this ...

  3. sql面试50题------(21-30)

    文章目录 21.查询不同老师所教不同课程平均分从高到低显示 23.使用分段[100,85),[85,70),[70,60),[<60] 来统计各科成绩,分别统计各分数段人数:课程ID和课程名称 ...

  4. [Oracle]复习笔记-SQL部分内容

    Oracle笔记--SQL部分 整体框架 语句的执行顺序:from →where →group by→having→select→order by select * from * where * gr ...

  5. virtualenv +virtualenvwrapper

    一.虚拟环境virtualenv 1.安装:pip3 install virtualenv 2.创建虚拟环境:virtualenv venv #venv为虚拟环境目录名,目录名自定义 #virtual ...

  6. day10-Tomcat02

    Tomcat02 4.IDEA开发JavaWeb工程 4.1开发javaweb工程&配置Tomcat&启动项目 需求:使用idea开发javaweb工程fishWeb,并将网页部署到f ...

  7. java查询三级树(三级目录)

    背景: 三级树实现效果 这里只介绍,查询数据库,构建三级目录的后端业务逻辑 1.创建查询类(对应数据库需要查出的字段) @Data @AllArgsConstructor @NoArgsConstru ...

  8. Seata Server 1.5.2 源码学习

    Seata 包括 Server端和Client端.Seata中有三种角色:TC.TM.RM,其中,Server端就是TC,TM和RM属Client端.Client端的源码学习上一篇已讲过,详见 < ...

  9. Vue 基础学习总结

    介绍 Vue.js 中文文档地址:https://cn.vuejs.org/guide/introduction.html#what-is-vue Vue.js 是什么 Vue (读音 /vjuː/, ...

  10. Go语言核心36讲43-----io包中接口的好处与优势

    上一篇文章中,我主要讲到了io.Reader的扩展接口和实现类型.当然,io代码包中的核心接口不止io.Reader一个. 我们基于它引出的一条主线,只是io包类型体系中的一部分.我们很有必要再从另一 ...