Microservices

What are Microservices?

Decomposition patterns

  • Decompose by business capability
  • Decompose by subdomain

Sub Domains

  • Records Management (Document Repository)
  • User Management (Users/Roles/Permissions)
  • Workflow (Customizable Workflow)
  • Master Data Management (Contract/Opportunity etc.)

Steps

  1. Use app credential to get/create/update/remove records instead of user credential in records management
  2. Abstract record entities with relationship with actual records (record unique key and uri)
  3. Abstract master entities relationship with record entities. e.g. Contract, Opportunity.
  4. Create customizable workflow for specific master entity. e.g. specific type of Contract.
  5. Create users with assigned roles (generic for specific type of master entity) and permissions (for specific record)

Architecture Styles

  • Microservices Architecture
  • Event-Driven Architecture

Microservices

Benefits:

  • Agility. Because microservices are deployed independently, it's easier to manage bug fixes and feature releases.
  • Small, focused teams. A microservice should be small enough that a single feature team can build, test, and deploy it. Small team sizes promote greater agility.
  • Small code base. In a monolithic application, there is a tendency over time for code dependencies to become tangled Adding a new feature requires touching code in a lot of places. By not sharing code or data stores, a microservices architecture minimizes dependencies, and that makes it easier to add new features.
  • Mix of technologies. Teams can pick the technology that best fits their service, using a mix of technology stacks as appropriate.
  • Fault isolation. If an individual microservice becomes unavailable, it won't disrupt the entire application, as long as any upstream microservices are designed to handle faults correctly (for example, by implementing circuit breaking).
  • Scalability. Services can be scaled independently, letting you scale out subsystems that require more resources, without scaling out the entire application.
  • Data isolation. It is much easier to perform schema updates, because only a single microservice is affected.

Microservices on AWS

  • Container - Amazon Elastic Container Service (ECS)
  • Serverless - AWS Lambda
  • Other
    • API Gateway pattern - Amazon API Gateway
    • Caching - Amazon ElastiCache Redis
    • Messaging - Amazon Simple Queue Service (SQS)
    • Pub/Sub - Amazon Simple Notification Service (SNS)
    • NoSQL - Amazon DynamoDB

Input -> Lambda -> DynamoDB -> Batch Job -> Database


AWS Microservices

Microservices on AWS

Monolithic vs. Microservices Architecture

Cloud Services

  • Compute

    • Containers

      • Amazon Elastic Container Service (ECS)
    • Serverless
      • AWS Lambda
  • Storage & Databases
    • Caching

      • Amazon ElastiCache
    • Object Storage
      • Amazon S3
    • NoSQL Databases
      • Amazon DynamoDB
    • Relational Databases
      • Amazon RDS
      • Amazon Aurora
  • Networking
    • Service Discovery

      • AWS Cloud Map
    • Service Mesh
      • AWS App Mesh
    • Elastic Load Balancing
      • Application Load Balancer
      • Network Load Balancer
    • API Proxy
      • Amazon API Gateway
    • DNS
      • Amazon Route 53
  • Messaging
    • Message Publishing & Subscription

      • Amazon Simple Notification Service (Amazon SNS)
    • Message Queuing
      • Amazon Simple Queue Service (Amazon SQS)
  • Logging and Monitoring
    • API Monitoring

      • AWS CloudTail
    • Application and Resource Monitoring
      • Amazon CloudWatch
    • Distributed Tracing
      • AWS X-Ray
  • DevOps
    • Container Image Repository

      • Amazon Elastic Container Registry (Amazon ECR)
    • Continuous Delivery
      • AWS Developer Tools

MMR Microservices Expectations

  • Individual compute
  • Individual deployment
  • Scalable
  • Small team
  • Decoupling
  • Free tech selection
  • No impact to existing apps

AWS Microservcies

  • Container
  • Serverless

MMR Integration Patterns

Source Target Method
Upstream App MMR Read
Upstream App MMR Write
MMR Downstream App Read
MMR Downstream App Write

Implementing Microservices on AWS (Web)

Implementing Microservices on AWS (PDF)

AWS Cloud Map service discovery for serverless applications

Guide to Implementing Microservices On AWS [With Examples]

Service connectivity inside and outside the mesh using AWS App Mesh (EC2/Fargate)

Implementing Microservices on AWS

Contents

  • Abstract
  • Introduction
  • Simple Microservices Architecture on AWS
    • User Interface
    • Microservices
    • Data Store
  • Reducing Operational Complexity
    • API Implementation
    • Serverless Microservices
    • Deploying Lambda-Based Applications
  • Distributed Systems Components
    • Service Discovery
    • Distributed Data Management
    • Asynchronous Communication and Lightweight Messaging
    • Distributed Monitoring
    • Chattiness
    • Auditing
  • Conclusion
  • Contributors
  • Document Revisions

There are three common patterns that we observe when our customers build microservices: API driven, event driven, and data streaming.

Microservices architectures are not a completely new approach to software engineering, but rather a combination of various successful and proven concepts such as:

  • Agile software development
  • Service-oriented architectures
  • API-first design
  • Continuous Integration/Continuous Delivery (CI/CD)

SOA, Service Oriented Architecture

XaaS, Everything as a Service

IaaS, Infrastructure as a Service

PaaS, Platform as a Service

SaaS, Software as a Service

Microservices

  • Decoupling of services
  • Data store autonomy
  • Miniaturized development
  • Testing setup
  • Facilitate faster time-to-market

How to choose the right data store for your miceroservices?

  • Performance

    1. Read performance

      operations-per-second

      how fast you can run queries

      how fast you can retrieve results

      how well you organize and index data
    2. Write performance

      operations-per-second
    3. Latency
    4. Resource efficiency
    5. Provisioning efficiency
  • Reliability
  • Data modeling

For read/write operations-per-second

  • Very high — Greater than one million
  • High — Between 500,000 and one million
  • Moderate — Between 10,000 and 500,000
  • Low — Less than 10,000

For latency

  • Low — Less than one millisecond
  • Moderate — one to 10 milliseconds
  • High — Greater than 10 milliseconds

Data Modeling Requirements

Nature of Data

  1. Transient data

  2. Ephemeral data

  3. Operational data

  4. Transactional data

Vendor Service Domain Product Certification Status Current Availability
AWS Database Services ElastiCache -- GA 1.0

[Choosing the Right Database for Microservices Solutions](file:///C:/Users/chikun.cui/Downloads/MMateev-SQLSat823Israel-Choosing-the-Right-Database-for-Microservices-Solutions.pdf)

Effective Microservices: 10 Best Practices

10 Microservices Best Practices for the Optimal Architecture Design

Adopting Microservices at Netflix: Lessons for Architectural Design

Creating Cross Tab Queries and Pivot Tables in SQL

SQL Server Cross Join

Crosstab queries using PIVOT in SQL Server

Use SQL Server to Create a Cross Tab Query

SQL Server Hardware Performance Tuning

How Monitoring Query Performance Can Help You Save SQL Memory Usage

Ten Common Database Design Mistakes

SQL Server database design best practices and tips for DBAs

Best Practice - An Introduction To Domain-Driven Design

martinFowler.com tagged by: domain driven design


AWS Microservices

  • Compute

    • Containers - Amazon Elastic Container Service
    • Serverless - AWS Lambda

Cloud Product Catalog

Vendor Service Domain Product Certification Status Current Availability
AWS Compute Services Elastic Container Service (ECS) Blueprint In Progress 1.0 Not Available
AWS Compute Services Lambda -- GA1.0

Azure Microservices

  • Microservices Approches

    • Service Fabric
    • Azure Kubernetes Service (AKS)
    • Azure Functions
    • API Management

Cloud Product Catalog

Vendor Service Domain Product Certification Status Current Availability
Azure Compute Services Service Fabric Clusters -- Beta 1.0
Azure Compute Services Function Apps -- GA 1.0
Azure Enterprise Integration API Management Services -- GA 1.0

GCP Microservices

  • Google App Engine
  • Google Kubernetes Engine (GKE)

Cloud Product Catalog

Vendor Service Domain Product Certification Status Current Availability
GCP Compute Services Google Kubernetes Engine (GKE) -- GA 2.0
GCP App Services App Engine -- Beta 2.0

MMR Technical Pain Points

  • Performance Issues

    High volume of data updates have impact on MMR performance.
  • Data Gap on Opportunity data

    Opportunity Data in MMR are from Sales ODS with 24 to 48 hours of delay from source application (MMS). If the Opportunity is not yet available in MMR, users would not be able to perform Opportunity submissions.

    Moreover, Sales ODS does not deliver updates for Opportunities that are not active in the current fiscal year. This impacts company code mapping for AIL reports.
  • Security Model

    Security Implementation in MMR is very granular.
  • Vendor Limitations and Product Maintenance

    Requires VM with desktop experience (does not support CORE). App teams need to raise exception requests

    since the vendor does not support cloud native offerings yet.Time to upgrade product version would take 3-6 months.
  • Data Replication

    MMR Data (both metadata and actual documents) are now replicated on other apps like SEAL and ALICE (like everything).

What are microservices?

Microservices - also known as the microservice architecture - is an architectural style that structures an application as a collection of services that are:

  • Highly maintainable and testable
  • Loosely coupled
  • Independently deployable
  • Organized around business capabilities
  • Owned by a small team

The microservice architecture enables the rapid, frequent and reliable delivery of large, complex applications. It also enables an organization to evolve its technology stack.

The pattern language is your guide

The microservice architecture is not a silver bullet. It has several drawbacks. Moreover, when using this architecture there are numerous issues that you must address.

The microservice architecture pattern language is a collection of patterns for applying the microservice architecture. It has two goals:

  1. The pattern language enables you to decide whether microservices are a good fit for your application.
  2. The pattern language enables you to use the microservice architecture successfully.

A good starting point is the Monolithic Architecture pattern, which is the traditional architectural style that is still a good choice for many applications. It does, however, have numerous limitations and issues and so a better choice for large/complex applications is the Microservice architecture pattern.

Avoid the potholes

Thinking of migrating to the microservice architecture? If so, you should look at this presentation about the potholes in the road from monolithic hell and read this series of blog posts about anti-patterns and how to avoid them.

Assess your architecture

If you have built an application with the microservice architecture then take a look at the Microservices Assessment Platform. The platform assesses what you have built and identifies what needs to be improved. It reduce architectural and organizational risk and maximizes the benefits of the microservice architecture.



  1. Key software delivery outcomes
  2. General architecture
  3. Inter-service communication
  4. Deployment and Reliability
  5. Obervability
  6. Externalized configuration
  7. Supporting infrastructure
  8. Libraries and frameworks
  9. Documentation
  10. Organization and process

  1. Key software delivery outcomes
  2. Service design

    A service is an independently deployable, loosely coupled, component with well-defined and focussed responsibilities.

    1. Is the service an independently deployable/executable component?
    2. Does the service implement a business capability?
    3. Does the service have a single responsibility?
    4. Is a service’s datastore private to that service?
    5. Does the service use reliable mechanism, such as sagas, to maintain data consistency across services?
    6. Is the service built using a supported technology stack?
    7. Is the service built using a supported microservice chassis?
  3. Externalized configuration
  4. Inter-service communication

    Services must communicate securely using IPC mechanisms that allow the API to evolve. In addition, a service that uses RPC must use a service discovery mechanism.

    1. Does the service use language neutral communication mechanisms?
    2. Is the service’s API secured?
    3. Do the communication mechanisms support API evolution?
    4. Does the service use service discovery to locate its (REST/RPC) dependencies?
    5. If the application uses client-side registration, Does the service register itself?
  5. Service reliability
  6. Deployment/Release
  7. Observability
  8. Documentation
  9. Automated testing
  10. Organization and process

Microsoft Microservices Architecture

API Gateway

演化路线

1 - 所有容器都在一台机器上使用不同端口利用Nginx映射

2 - 部分容器在单独的机器上,UI使用静态对象

https://github.com/Microsoft/Yams

Microservices的更多相关文章

  1. 微服务(Microservices)—Martin Fowler【翻译】

    本文转载自:http://www.cnblogs.com/liuning8023/p/4493156.html -------------------------------------------- ...

  2. 微服务(Microservices)——Martin Flower【翻译】

    原文是 Martin Flower 于 2014 年 3 月 25 日写的<Microservices>. 本文内容 微服务 微服务风格的特性 组件化(Componentization ) ...

  3. Microservices Reference Architecture - with Spring Boot, Spring Cloud and Netflix OSS--转

    原文地址:https://www.linkedin.com/pulse/microservices-reference-architecture-spring-boot-cloud-anil-alle ...

  4. Using Amazon API Gateway with microservices deployed on Amazon ECS

    One convenient way to run microservices is to deploy them as Docker containers. Docker containers ar ...

  5. Building microservices with Spring Cloud and Netflix OSS, part 2

    In Part 1 we used core components in Spring Cloud and Netflix OSS, i.e. Eureka, Ribbon and Zuul, to ...

  6. Cracking Microservices practices

    微服务最佳实践 英文原文:Cracking Microservices practices 在我还不知道什么叫微服务架构的时候我就使用过它.以前,我写了一些管道程序(pipeline applicat ...

  7. How Microservices are Transforming Python Development

    https://blog.appdynamics.com/engineering/how-microservices-are-transforming-python-development/ Summ ...

  8. Securing Spring Cloud Microservices With OAuth2

    From Zero to OAuth2 in Spring cloud Today I am presenting hours of research about a (apparently) sim ...

  9. How to distribute a database among microservices

    在为相对复杂的企业域构建微服务时,我们需要找到在这个域中不同责任的边界.在每个边界中,我们会创建领域模型,这个模型是针对业务责任所设计的,并反映了这种业务责任.针对每个边界的数据模型会由同一个边界中的 ...

  10. 微服务(Microservices)【翻译】

    微服务 “微服务架构(Microservice Architecture)”一词在过去几年里广泛的传播,它用于描述一种设计应用程序的特别方式,作为一套独立可部署的服务.目前,这种架构方式还没有准确的定 ...

随机推荐

  1. Python:读取txt中按列分布的数据,并将结果保存在Excel文件中 && 保存每一行的元素为list

    import xlwt import os def write_excel(words,filename): #写入Excel的函数,words是数据,filename是文件名 wb=xlwt.Wor ...

  2. (第一章第五部分)TensorFlow框架之变量OP

    系列博客链接: (一)TensorFlow框架介绍:https://www.cnblogs.com/kongweisi/p/11038395.html (二)TensorFlow框架之图与Tensor ...

  3. 数据库连接池与SQL工具类

    数据库连接池与SQL工具类 1.数据库连接池 依赖包 pymysql dbutils # -*- coding: utf-8 -*- ''' @Time : 2021/11/19 16:45 @Aut ...

  4. Go select 死锁引发的思考

    Go select 死锁引发的思考 https://mp.weixin.qq.com/s/Ov1FvLsLfSaY8GNzfjfMbg一文引发的延续思考 上文总结 总结一 package main i ...

  5. 实例化类对象及类的属性set方法使用不当

    类的属性中set方法操作数据库,新建类对象并给其赋值时总会触发该set方法,而导致不期望的错乱: 库位类Storage,其中传感器状态SensorStatus和逻辑状态LogicStatus有一定的关 ...

  6. Sublime Text 3 build 3103 注册码

    分享几个ST3的注册码,第一个我注册到自己电脑上,亲测可用,剩余几个没有测试.→原文链接 -– BEGIN LICENSE -–Michael BarnesSingle User LicenseEA7 ...

  7. PHP message:filesize(): stat failed for 错误

    PHP message:filesize(): stat failed for 错误 message:filesize(): stat failed for F:s2017\SinaImgUpload ...

  8. AT1219题解

    题意 设 \(a\) 的价值为 \(a \times cnt_a\)(\(cnt_a\) 为 \(a\) 在区间中出现的次数),求区间种某种元素,使得这种元素的价值最大. 因为设计出现元素的次数,所以 ...

  9. ArcMap操作随记(7)

    1.栅格分辨率调整 [重采样] 2.点集数据对插值模型精度检验 test数据→[子集要素](地统计分析)→train→[插值]→[多值提取至点]→[字段计算器](Abs([value]-[spline ...

  10. CentOS 7 源码安装 Zabbix 6.0

    Zabbix 主要有以下几个组件组成: Zabbix Server:Zabbix 服务端,是 Zabbix 的核心组件.它负责接收监控数据并触发告警,还负责将监控数据持久化到数据库中. Zabbix ...