CUDA ---- device管理
device管理
NVIDIA提供了集中凡是来查询和管理GPU device,掌握GPU信息查询很重要,因为这可以帮助你设置kernel的执行配置。
本博文将主要介绍下面两方面内容:
- CUDA runtime API function
- NVIDIA系统管理命令行
使用runtime API来查询GPU信息
你可以使用下面的function来查询所有关于GPU device 的信息:
cudaError_t cudaGetDeviceProperties(cudaDeviceProp *prop, int device);
GPU的信息放在cudaDeviceProp这个结构体中。
代码
#include <cuda_runtime.h>
#include <stdio.h>
int main(int argc, char **argv) {
printf("%s Starting...\n", argv[]);
int deviceCount = ;
cudaError_t error_id = cudaGetDeviceCount(&deviceCount);
if (error_id != cudaSuccess) {
printf("cudaGetDeviceCount returned %d\n-> %s\n",
(int)error_id, cudaGetErrorString(error_id));
printf("Result = FAIL\n");
exit(EXIT_FAILURE);
}
if (deviceCount == ) {
printf("There are no available device(s) that support CUDA\n");
} else {
printf("Detected %d CUDA Capable device(s)\n", deviceCount);
}
int dev, driverVersion = , runtimeVersion = ;
dev =;
cudaSetDevice(dev);
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, dev);
printf("Device %d: \"%s\"\n", dev, deviceProp.name);
cudaDriverGetVersion(&driverVersion);
cudaRuntimeGetVersion(&runtimeVersion);
printf(" CUDA Driver Version / Runtime Version %d.%d / %d.%d\n",driverVersion/, (driverVersion%)/,runtimeVersion/, (runtimeVersion%)/);
printf(" CUDA Capability Major/Minor version number: %d.%d\n",deviceProp.major, deviceProp.minor);
printf(" Total amount of global memory: %.2f MBytes (%llu bytes)\n",(float)deviceProp.totalGlobalMem/(pow(1024.0,)),(unsigned long long) deviceProp.totalGlobalMem);
printf(" GPU Clock rate: %.0f MHz (%0.2f GHz)\n",deviceProp.clockRate * 1e-3f, deviceProp.clockRate * 1e-6f);
printf(" Memory Clock rate: %.0f Mhz\n",deviceProp.memoryClockRate * 1e-3f);
printf(" Memory Bus Width: %d-bit\n",deviceProp.memoryBusWidth);
if (deviceProp.l2CacheSize) {
printf(" L2 Cache Size: %d bytes\n",
deviceProp.l2CacheSize);
}
printf(" Max Texture Dimension Size (x,y,z) 1D=(%d), 2D=(%d,%d), 3D=(%d,%d,%d)\n",
deviceProp.maxTexture1D , deviceProp.maxTexture2D[],
deviceProp.maxTexture2D[],
deviceProp.maxTexture3D[], deviceProp.maxTexture3D[],
deviceProp.maxTexture3D[]);
printf(" Max Layered Texture Size (dim) x layers 1D=(%d) x %d, 2D=(%d,%d) x %d\n",
deviceProp.maxTexture1DLayered[], deviceProp.maxTexture1DLayered[],
deviceProp.maxTexture2DLayered[], deviceProp.maxTexture2DLayered[],
deviceProp.maxTexture2DLayered[]);
printf(" Total amount of constant memory: %lu bytes\n",deviceProp.totalConstMem);
printf(" Total amount of shared memory per block: %lu bytes\n",deviceProp.sharedMemPerBlock);
printf(" Total number of registers available per block: %d\n",deviceProp.regsPerBlock);
printf(" Warp size: %d\n", deviceProp.warpSize);
printf(" Maximum number of threads per multiprocessor: %d\n",deviceProp.maxThreadsPerMultiProcessor);
printf(" Maximum number of threads per block: %d\n",deviceProp.maxThreadsPerBlock);
printf(" Maximum sizes of each dimension of a block: %d x %d x %d\n",
deviceProp.maxThreadsDim[],
deviceProp.maxThreadsDim[],
deviceProp.maxThreadsDim[]);
printf(" Maximum sizes of each dimension of a grid: %d x %d x %d\n",
deviceProp.maxGridSize[],
deviceProp.maxGridSize[],
deviceProp.maxGridSize[]);
printf(" Maximum memory pitch: %lu bytes\n", deviceProp.memPitch);
exit(EXIT_SUCCESS);
}
编译运行:
$ nvcc checkDeviceInfor.cu -o checkDeviceInfor
$ ./checkDeviceInfor
输出:
./checkDeviceInfor Starting...
Detected CUDA Capable device(s)
Device : "Tesla M2070"
CUDA Driver Version / Runtime Version 5.5 / 5.5
CUDA Capability Major/Minor version number: 2.0
Total amount of global memory: 5.25 MBytes ( bytes)
GPU Clock rate: MHz (1.15 GHz)
Memory Clock rate: Mhz
Memory Bus Width: -bit
L2 Cache Size: bytes
Max Texture Dimension Size (x,y,z) 1D=(), 2D=(,), 3D=(,,)
Max Layered Texture Size (dim) x layers 1D=() x , 2D=(,) x
Total amount of constant memory: bytes
Total amount of shared memory per block: bytes
Total number of registers available per block:
Warp size:
Maximum number of threads per multiprocessor:
Maximum number of threads per block:
Maximum sizes of each dimension of a block: x x
Maximum sizes of each dimension of a grid: x x
Maximum memory pitch: bytes
决定最佳GPU
对于支持多GPU的系统,是需要从中选择一个来作为我们的device的,抉择出最佳计算性能GPU的一种方法就是由其拥有的处理器数量决定,可以用下面的代码来选择最佳GPU。
int numDevices = ;
cudaGetDeviceCount(&numDevices);
if (numDevices > ) {
int maxMultiprocessors = , maxDevice = ;
for (int device=; device<numDevices; device++) {
cudaDeviceProp props;
cudaGetDeviceProperties(&props, device);
if (maxMultiprocessors < props.multiProcessorCount) {
maxMultiprocessors = props.multiProcessorCount;
maxDevice = device;
}
}
cudaSetDevice(maxDevice);
}
使用nvidia-smi来查询GPU信息
nvidia-smi是一个命令行工具,可以帮助你管理操作GPU device,并且允许你查询和更改device状态。
nvidia-smi用处很多,比如,下面的指令:
$ nvidia-smi -L
GPU : Tesla M2070 (UUID: GPU-68df8aec-e85c--2b81-0c9e689a43a7)
GPU : Tesla M2070 (UUID: GPU-382f23c1--01e2--ff9628930b70)
然后可以使用下面的命令来查询GPU 0 的详细信息:
$nvidia-smi –q –i
下面是该命令的一些参数,可以精简nvidia-smi的显示信息:
MEMORY
UTILIZATION
ECC
TEMPERATURE
POWER
CLOCK
COMPUTE
PIDS
PERFORMANCE
SUPPORTED_CLOCKS
PAGE_RETIREMENT
ACCOUNTING
比如,显示只device memory的信息:
$nvidia-smi –q –i –d MEMORY | tail –n
Memory Usage
Total : MB
Used : MB
Free : MB
设置device
对于多GPU系统,使用nvidia-smi可以查看各GPU属性,每个GPU从0开始依次标注,使用环境变量CUDA_VISIBLE_DEVICES可以指定GPU而不用修改application。
可以设置环境变量CUDA_VISIBLE_DEVICES-2来屏蔽其他GPU,这样只有GPU2能被使用。当然也可以使用CUDA_VISIBLE_DEVICES-2,3来设置多个GPU,他们的device ID分别为0和1.
代码下载:CodeSamples.zip
CUDA ---- device管理的更多相关文章
- [转] HTML5+规范:device(管理设备信息)
http://blog.csdn.net/qq_27626333/article/details/51815310 Device模块管理设备信息,用于获取手机设备的相关信息,如IMEI.IMSI.型号 ...
- BEP 7:CUDA外部内存管理插件(上)
BEP 7:CUDA外部内存管理插件(上) 背景和目标 在CUDA阵列接口使得能够共享不同的Python之间的数据库的访问CUDA设备.但是,每个库都与其它库区别对待.例如: Numba在内部管理内存 ...
- 【CUDA 基础】4.2 内存管理
title: [CUDA 基础]4.2 内存管理 categories: - CUDA - Freshman tags: - CUDA内存管理 - CUDA内存分配和释放 - CUDA内存传输 - 固 ...
- Caffe + Ubuntu 14.04 64bit + CUDA 6.5 配置说明
本文安装显卡驱动的方式已经过时, 最新安装说明请参考发布在Gist上的这篇文章,如有任何疑问,仍然欢迎在本文下留言 :P (本文档使用同一块NVIDIA显卡进行显示与计算, 如分别使用不同的显卡进行显 ...
- CUDA C Best Practices Guide 在线教程学习笔记 Part 2
10. 执行配置优化 ● 一个 SM中,占用率 = 活动线程束的数量 / 最大可能活动线程束的数量.后者保存在设备属性的 maxThreadsPerMultiProcessor 分量中(GTX10 ...
- Caffe + Ubuntu 14.04 64bit + CUDA 6.5 配置说明2
1. 安装build-essentials 安装开发所需要的一些基本包 sudo apt-get install build-essential 2. 安装NVIDIA驱动 (3.4.0) 2.1 准 ...
- Caffe使用: Ubuntu 14.04(x64) 从cuda 7.0 升级到 cuda8.0
由于之前已经在Ubuntu 14.04 x64上面安装cuda7.0+caffe, 并且已经配置好,caffe也已经跑通. 但是最近需要使用Torch,而Torch对cuda的要求是8.0,因此决定对 ...
- Ubuntu14.04 64bit下Caffe + CUDA 6.5安装详细步骤
不多说,直接上干货! 笔者花了很长时间才装完,主要是cuda安装和opencv安装比较费劲,cuda找不到32位的安装包只好重装64位的ubuntu系统,opencv 也是尝试了很久才解决,这里建议用 ...
- Caffe+UbuntuKylin14.04_X64+CUDA 6.5配置
在编译Caffe的漫长过程中,经过了一个又一个坑,掉进去再爬出来,挺有趣的.对比原文有修改! LInux下配置安装:(本文档使用同一块NVIDIA显卡进行显示与计算, 如分别使用不同的显卡进行显示和计 ...
随机推荐
- JAVA springmvc+spring+mybatis整合
一.springmvc---controller spring----service mybatiss---dao pring(包括springmvc).mybatis.mybatis-sprin ...
- JAVA框架 Mybaits 动态sql
动态sql 一:if标签使用: 我们在查询的时候,有时候由于查询的条件的不确定性,导致where的后面的条件的不同,这时候就需要我们进行where后面的条件进行拼接. Mapper配置文件: < ...
- 四,ESP8266 TCP服务器(基于Lua脚本语言)
我要赶时间赶紧写完所有的内容....朋友的东西答应的还没做完呢!!!!!!!没想到又来了新的事情,,....... 配置模块作为TCP服务器然后呢咱们连接服务器发指令控制LED亮灭 控制的指令呢咱就配 ...
- 模板自定义函数 template function
sqlite3中的日期默认是UTC,当日期字段的默认值是CURRENT_TIMESTAMP时,这个日期和北京时间CST少了8小时. 网上建议说数据库里用UTC,读取数据时再转换为当地时间. web页面 ...
- 20155232《网络对抗》Exp5 MSF基础应用
20155232<网络对抗>Exp5 MSF基础应用 基础问题回答 用自己的话解释什么是exploit,payload,encode. exploit:就是利用可能存在的漏洞对目标进行攻击 ...
- 实践:IIS7下访问ashx页面,显示404
问题描述 1.路径什么的都对,这方面的原因就不要想了 2.在我的电脑上可以,在同事的电脑上不可以 方案1:未注册ashx的处理应用程序 也就是不知道IIS不知道用什么应用程序处理ashx文件,解决办法 ...
- HTML5 本地存储的用法
HTML5 的本地存储 API 中的 localStorage 与 sessionStorage 在使用方法上是相同的,区别在于 sessionStorage 在关闭页面后即被清空,而 localSt ...
- sql——inner join,where,left join的区别
1.select a.name,a.sex,a.subject,a.age from TableA a, TableB b where a.name = b.name 2.select a.name, ...
- HDU-6356 Glad You Came (线段树)
题目链接:Glad You Came 题意:数组有n个数初始为0,m个询问,每个询问给出L R V(按照给定函数生成),将数组的下标L到R的数与V取较大值,最后输出给定的公式结果. 题意:哇~打比赛的 ...
- libgdx学习记录15——音乐Music播放
背景音乐是游戏中必备的元素,好的背景音乐能为游戏加分不少,使人更容易融入到游戏的氛围中去. Music类中主要有以下函数: play()播放 stop()停止 pause()暂停 setVolume( ...