BZOJ4589 Hard Nim(博弈+FWT)
即使n个数的异或为0。如果只有两堆,将质数筛出来设为1,做一个异或卷积即可。显然这个东西满足结合律,多堆时直接快速幂。可以在点值表示下进行。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
#define N (1<<17)
#define P 1000000007
#define inv2 500000004
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int T,n,m,f[N];
bool flag[N];
int ksm(int a,int k)
{
int s=;
for (;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
void FWT(int *a,int n,int op)
{
for (int i=;i<=n;i<<=)
for (int j=;j<n;j+=i)
for (int k=j;k<j+(i>>);k++)
{
int x=a[k],y=a[k+(i>>)];
a[k]=(x+y)%P,a[k+(i>>)]=(x-y+P)%P;
if (op==) a[k]=1ll*a[k]*inv2%P,a[k+(i>>)]=1ll*a[k+(i>>)]*inv2%P;
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4589.in","r",stdin);
freopen("bzoj4589.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
flag[]=flag[]=;
for (int i=;i<=;i++)
for (int j=;j<=/i;j++)
flag[i*j]=;
while (scanf("%d %d",&n,&m)!=EOF)
{
int t=;while (t<=m) t<<=;
for (int i=;i<=m;i++) f[i]=flag[i]^;
for (int i=m+;i<t;i++) f[i]=;
FWT(f,t,);
for (int i=;i<t;i++) f[i]=ksm(f[i],n);
FWT(f,t,);
cout<<f[]<<endl;
}
}
BZOJ4589 Hard Nim(博弈+FWT)的更多相关文章
- BZOJ4589 Hard Nim 【FWT】
题目链接 BZOJ4589 题解 FWT 模板题 #include<algorithm> #include<iostream> #include<cstdlib> ...
- HDU 2509 Nim博弈变形
1.HDU 2509 2.题意:n堆苹果,两个人轮流,每次从一堆中取连续的多个,至少取一个,最后取光者败. 3.总结:Nim博弈的变形,还是不知道怎么分析,,,,看了大牛的博客. 传送门 首先给出结 ...
- HDU 1907 Nim博弈变形
1.HDU 1907 2.题意:n堆糖,两人轮流,每次从任意一堆中至少取一个,最后取光者输. 3.总结:有点变形的Nim,还是不太明白,盗用一下学长的分析吧 传送门 分析:经典的Nim博弈的一点变形. ...
- zoj3591 Nim(Nim博弈)
ZOJ 3591 Nim(Nim博弈) 题目意思是说有n堆石子,Alice只能从中选出连续的几堆来玩Nim博弈,现在问Alice想要获胜有多少种方法(即有多少种选择方式). 方法是这样的,由于Nim博 ...
- hdu 1907 John&& hdu 2509 Be the Winner(基础nim博弈)
Problem Description Little John is playing very funny game with his younger brother. There is one bi ...
- 关于NIM博弈结论的证明
关于NIM博弈结论的证明 NIM博弈:有k(k>=1)堆数量不一定的物品(石子或豆粒…)两人轮流取,每次只能从一堆中取若干数量(小于等于这堆物品的数量)的物品,判定胜负的条件就是,最后一次取得人 ...
- HDU - 1850 Nim博弈
思路:可以对任意一堆牌进行操作,根据Nim博弈定理--所有堆的数量异或值为0就是P态,否则为N态,那么直接对某堆牌操作能让所有牌异或值为0即可,首先求得所有牌堆的异或值,然后枚举每一堆,用已经得到的异 ...
- 博弈论中的Nim博弈
瞎扯 \(orzorz\) \(cdx\) 聚聚给我们讲了博弈论.我要没学上了,祝各位新年快乐.现在让我讲课我都不知道讲什么,我会的东西大家都会,太菜了太菜了. 马上就要回去上文化课了,今明还是收下尾 ...
- HDU 2176:取(m堆)石子游戏(Nim博弈)
取(m堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...
- hdu 1730 Nim博弈
题目来源:http://acm.hdu.edu.cn/showproblem.php?pid=1730 Nim博弈为:n堆石子,每个人可以在任意一堆中取任意数量的石子 n个数异或值为0就后手赢,否则先 ...
随机推荐
- oracle 将字符串转化为数值型to_number()
select to_number('22.222') from dual
- C# 分部方法partial
定义:使用partial关键字构建分部类定义.允许在一个文件中构建方法原型,而在另一个文件中实现. 1)分部方法只可以定义在分部类中 2)分部方法必须返回void 3)分部方法可以是静态的或实例级别的 ...
- 前尘浮华一场梦 NOI2018 游记
前尘浮华一场梦 NOI2018 哦?我摆弄着手中的键盘,看起来,是要我离开吗?好吧,对于每一个OIer的年,都是以NOI开始,以NOI结束的啊…这个年过的,可不是那么让人舒服呢… 你想听那个人的故事? ...
- [HNOI2012]集合选数 BZOJ2734
分析: 构造法...每次找到一个没有被选过的数,用这个数推出一个表格,之后在表格上跑状压DP,时间复杂度O(n) 附上代码: #include <cstdio> #include < ...
- 20155327 李百乾 Exp7 网络欺诈防范
20155327 李百乾 Exp7 网络欺诈防范 基础问题回答 (1)通常在什么场景下容易受到DNS spoof攻击 就此次试验来看,被收到NDSspoof攻击,首先要被攻击机扫描,并被设置为目标,所 ...
- service手动实例化(new)导致类中的spring对象无法注入的问题解决
下面说的这个画横线的可能是错误的,因为我之前用controller继承父类的注解对象的时候成功了,所以可能这次的唯一原因就是 不该把本该从ioc容器中拿出的对象通过new的方式实例化,至于继承注解对象 ...
- [CF1007D]Ants[2-SAT+树剖+线段树优化建图]
题意 我们用路径 \((u, v)\) 表示一棵树上从结点 \(u\) 到结点 \(v\) 的最短路径. 给定一棵由 \(n\) 个结点构成的树.你需要用 \(m\) 种不同的颜色为这棵树的树边染色, ...
- zooland 新开源的RPC项目,希望大家在开发的微服务的时候多一种选择,让微服务开发简单,并且容易上手。
zooland 我叫它动物园地,一个构思很长时间的一个项目.起初只是觉得各种通信框架都封装的很好了,但是就是差些兼容,防错,高可用.同时在使用上,不希望有多余的代码,像普通接口一样使用就可以了. 基于 ...
- leetcode刷题笔记258 各位相加
题目描述: 给一个非负整数 num,反复添加所有的数字,直到结果只有一个数字. 例如: 设定 num = 38,过程就像: 3 + 8 = 11, 1 + 1 = 2. 由于 2 只有1个数字,所以返 ...
- linux一切皆文件之tcp socket描述符(三)
一.知识准备 1.在linux中,一切皆为文件,所有不同种类的类型都被抽象成文件(比如:块设备,socket套接字,pipe队列) 2.操作这些不同的类型就像操作文件一样,比如增删改查等 二.环境准备 ...