题目描述

现有n盏灯,以及m个按钮。每个按钮可以同时控制这n盏灯——按下了第i个按钮,对于所有的灯都有一个效果。按下i按钮对于第j盏灯,是下面3中效果之一:如果a[i][j]为1,那么当这盏灯开了的时候,把它关上,否则不管;如果为-1的话,如果这盏灯是关的,那么把它打开,否则也不管;如果是0,无论这灯是否开,都不管。

现在这些灯都是开的,给出所有开关对所有灯的控制效果,求问最少要按几下按钮才能全部关掉。

输入输出格式

输入格式:

前两行两个数,n m

接下来m行,每行n个数,a[i][j]表示第i个开关对第j个灯的效果。

输出格式:

一个整数,表示最少按按钮次数。如果没有任何办法使其全部关闭,输出-1

输入输出样例

输入样例#1:

3
2
1 0 1
-1 1 0
输出样例#1:

2

说明

对于20%数据,输出无解可以得分。

对于20%数据,n<=5

对于20%数据,m<=20

上面的数据点可能会重叠。

对于100%数据 n<=10,m<=100

Solution:

  本题状压dp水题。

  定义$f[j]$表示当前灯的状态为$j$的最小花费,初始状态$f[0]=0$,目标状态$f[(1<<n)-1]$($0$为开,$1$为关)。

  用$a_i,b_i$记录下每个按钮的开关效果,然后跑最短路,转移时就二进制捣鼓一下。

  具体来说,若$(i,j)$输入的$x==1$则$a_i|=1<<j-1$,若输入的$x==-1$则$b_i|=1<<j-1$。

  转移时当前状态$sta$转移为$(sta|a_i)\&(~b_i)$就能做到灯的开关变换了。

代码:

/*Code by 520 -- 10.16*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int n,m,a[N],b[N],f[<<];
bool vis[<<];
queue<int>q; int main(){
ios::sync_with_stdio();
cin>>n>>m; int x,lim=(<<n)-;
For(i,,m) For(j,,n) {
cin>>x;
if(x==) a[i]|=(<<j-);
if(x==-) b[i]|=(<<j-);
}
memset(f,0x3f,sizeof(f));
f[]=;q.push();
while(!q.empty()){
int u=q.front();q.pop();vis[u]=;
For(i,,m) {
int sta=(u|a[i])&(~b[i]);
if(f[sta]>f[u]+) {
f[sta]=f[u]+;
if(!vis[sta]) vis[sta]=,q.push(sta);
}
}
}
cout<<(f[lim]==0x3f3f3f3f?-:f[lim]);
return ;
}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P2622 关灯问题II的更多相关文章

  1. P2622 关灯问题II(状压bfs)

    P2622 关灯问题II 题目描述 现有n盏灯,以及m个按钮.每个按钮可以同时控制这n盏灯——按下了第i个按钮,对于所有的灯都有一个效果.按下i按钮对于第j盏灯,是下面3中效果之一:如果a[i][j] ...

  2. luogu p2622关灯问题II

    luogu p2622关灯问题II 题目描述 现有n盏灯,以及m个按钮.每个按钮可以同时控制这n盏灯--按下了第i个按钮,对于所有的灯都有一个效果.按下i按钮对于第j盏灯,是下面3中效果之一:如果a[ ...

  3. 洛谷 P2622 关灯问题II【状压DP;隐式图搜索】

    题目描述 现有n盏灯,以及m个按钮.每个按钮可以同时控制这n盏灯--按下了第i个按钮,对于所有的灯都有一个效果.按下i按钮对于第j盏灯,是下面3中效果之一:如果a[i][j]为1,那么当这盏灯开了的时 ...

  4. P2622 关灯问题II (状态压缩入门)

    题目链接: https://www.luogu.org/problemnew/show/P2622 具体思路:暴力,尝试每个开关,然后看所有的情况中存不存在灯全部关闭的情况,在储存所有灯的情况的时候, ...

  5. P2622 关灯问题II (状态压缩,最短路)

    题目链接 Solution 这道题算是很经典的状压问题了,好题. 考虑到 \(n\) 的范围仅为 \(10\) , 那么也就是说所有状态压起来也只有 \(1024\) 种情况. 然后我们发现 \(m\ ...

  6. 洛谷 P2622 关灯问题II【状压DP】

    传送门:https://www.luogu.org/problemnew/show/P2622 题面: 题目描述 现有n盏灯,以及m个按钮.每个按钮可以同时控制这n盏灯--按下了第i个按钮,对于所有的 ...

  7. 洛谷 P2622 关灯问题II(状压DP入门题)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 相关变量解释: int n,m; ];//a[i][j] : 第i个开关对第j个 ...

  8. 洛谷P2622 关灯问题II

    洛谷题目链接 声明: 本篇文章不讲基础,对萌新不太友好,(我就是萌新),要学状压$dp$的请另寻,这篇文章只是便于本人查看.... 首先看到$n<=10$,就可以考虑状压了,要求最小值,所以初始 ...

  9. 洛谷P2622 关灯问题II (二进制枚举+bfs

    题目描述 现有n盏灯,以及m个按钮.每个按钮可以同时控制这n盏灯——按下了第i个按钮,对于所有的灯都有一个效果.按下i按钮对于第j盏灯,是下面3中效果之一:如果a[i][j]为1,那么当这盏灯开了的时 ...

随机推荐

  1. linux 创建守护进程的相关知识

    linux 创建守护进程的相关知识 http://www.114390.com/article/46410.htm linux 创建守护进程的相关知识,这篇文章主要介绍了linux 创建守护进程的相关 ...

  2. C#构造方法--实例化类时初始化的方法

    using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Cons ...

  3. DQN(Deep Reiforcement Learning) 发展历程(二)

    目录 动态规划 使用条件 分类 求解方法 参考 DQN发展历程(一) DQN发展历程(二) DQN发展历程(三) DQN发展历程(四) DQN发展历程(五) 动态规划 动态规划给出了求解强化学习的一种 ...

  4. 写个定时任务更新svn

    最近学了点shell编程,寻思锻炼下写一个.平常你学习或者看别人讲,自己不练习肯定不行,基本上一动手准出错哈哈.等自己去实践,才会知道哪里有问题,哪里容易出错,哪里要注意什么的. 因为我们每个人有自己 ...

  5. 20155210 Exp8 WEB基础实践

    Exp8 WEB基础实践 Apache环境配置 apache是kali下的web服务器,通过访问ip地址+端口号+文件名称可以打开对应的网页. 输入命令vi /etc/apache2/ports.co ...

  6. 汇编  cdecl 函数调用约定,stdcall 函数调用约定

    知识点:  cdecl 函数调用约定  stdcall 函数调用约定  CALL堆栈平衡 配置属性--> c/c++ -->高级-->调用约定 一.cdecl调用约定 VC++ ...

  7. python sorted三个例子

    # 例1. 按照元素出现的次数来排序 seq = [2,4,3,1,2,2,3] # 按次数排序 seq2 = sorted(seq, key=lambda x:seq.count(x)) print ...

  8. json-server+mockjs 模拟REST接口

    前言: 项目开发中,影响项目进程的常常是由于在前后端数据交互的开发流程中停滞,前端完成静态页面的开发后,后端迟迟未给到接口.而现在,我们就可以通过根据后端接口字段,建立一个REST风格的API接口,进 ...

  9. Asp.Net_上传文件(ftp、webClient、webService)

    第一种:通过FTP来上传文件 首先,在另外一台服务器上设置好FTP服务,并创建好允许上传的用户和密码,然后,在ASP.NET里就可以直接将文件上传到这台 FTP 服务器上了.代码如下: <%@ ...

  10. Harbor私有镜像仓库无坑搭建

    转载:https://k8s.abcdocker.com/kubernetes_harbor.html 一.介绍 Docker容器应用的开发和运行路不开可靠的镜像管理,虽然Docker官方也提供了公共 ...