【Java】 大话数据结构(15) 排序算法(2) (快速排序及其优化)
本文根据《大话数据结构》一书,实现了Java版的快速排序。
更多:数据结构与算法合集
基本概念
基本思想:在每轮排序中,选取一个基准元素,其他元素中比基准元素小的排到数列的一边,大的排到数列的另一边;之后对两边的数列继续进行这种排序,最终达到整体有序。
图片来自公众号:程序员小灰
实现代码
根据上述基本思想,可以先写出快速排序最核心的代码:对于数组a中从下标为low至下标为high的元素,选取一个基准元素(记为pivotKey),根据与基准比较的大小,将这些元素排到基准元素的两端。
注意点:1.两端向中间扫描时,一定要先从高段往低端扫描(low<high && a[high]<pivotKey),这样才能实现pivotKey一直会交换到中间。!!
2.比较大小时不要忘记low<high还要一直成立,即(low<high && a[high]<pivotKey)。!! 例如,数组全为同一个数字时,不加这个判断有可能导致越界
/**
* 对数组a中下标从low到high的元素,选取基准元素pivotKey,
* 根据与基准比较的大小,将各个元素排到基准元素的两端。
* 返回值为最后基准元素的位置
*/
public int partition(int[] a, int low, int high) {
int pivotKey = a[low]; //用第一个元素作为基准元素
while (low < high) { //两侧交替向中间扫描
while (low < high && a[high] >= pivotKey)
high--;
swap(a, low, high); //比基准小的元素放到低端
while (low < high && a[low] <= pivotKey)
low++;
swap(a, low, high); //比基准大的元素放到高端
}
return low; //返回基准元素所在位置
}
将元素分为两部分后,必须对两个子部分继续进行上面的排序,所以要用到递归。代码如下:
/**
* 递归调用
*/
public void qSort(int[] a, int low, int high) {
int pivot;
if (low >= high)
return;
pivot = partition(a, low, high); //将数列一分为二
qSort(a, low, pivot - 1); //对低子表排序
qSort(a, pivot + 1, high); //对高子表排序
}
完整Java代码
(含测试代码)
import java.util.Arrays; /**
*
* @Description 快速排序
*
* @author yongh
* @date 2018年9月14日 下午2:39:00
*/
public class QuickSort {
public void quickSort(int[] a) {
if (a == null)
return;
qSort(a, 0, a.length - 1);
} /**
* 递归调用
*/
public void qSort(int[] a, int low, int high) {
int pivot;
if (low >= high)
return;
pivot = partition(a, low, high); //将数列一分为二
qSort(a, low, pivot - 1); //对低子表排序
qSort(a, pivot + 1, high); //对高子表排序
} /**
* 对数组a中下标从low到high的元素,选取基准元素pivotKey,
* 根据与基准比较的大小,将各个元素排到基准元素的两端。
* 返回值为最后基准元素的位置
*/
public int partition(int[] a, int low, int high) {
int pivotKey = a[low]; //用第一个元素作为基准元素
while (low < high) { //两侧交替向中间扫描
while (low < high && a[high] >= pivotKey)
high--;
swap(a, low, high); //比基准小的元素放到低端
while (low < high && a[low] <= pivotKey)
low++;
swap(a, low, high); //比基准大的元素放到高端
}
return low; //返回基准元素所在位置
} public void swap(int[] a, int i, int j) {
int temp;
temp = a[j];
a[j] = a[i];
a[i] = temp;
} // =========测试代码=======
public void test1() {
int[] a = null;
quickSort(a);
System.out.println(Arrays.toString(a));
} public void test2() {
int[] a = {};
quickSort(a);
System.out.println(Arrays.toString(a));
} public void test3() {
int[] a = { 1 };
quickSort(a);
System.out.println(Arrays.toString(a));
} public void test4() {
int[] a = { 3, 3, 3, 3, 3 };
quickSort(a);
System.out.println(Arrays.toString(a));
} public void test5() {
int[] a = { -3, 6, 3, 1, 3, 7, 5, 6, 2 };
quickSort(a);
System.out.println(Arrays.toString(a));
} public static void main(String[] args) {
QuickSort demo = new QuickSort();
demo.test1();
demo.test2();
demo.test3();
demo.test4();
demo.test5();
}
}
null
[]
[]
[, , , , ]
[-, , , , , , , , ]
QuickSort
快速排序优化
1.优化选取枢纽
基准应尽量处于序列中间位置,可以采取“三数取中”的方法,在partition()方法开头加以下代码,使得a[low]为三数的中间值:
// 三数取中,将中间元素放在第一个位置
if (a[low] > a[high])
swap(a, low, high);
if (a[(low + high) / 2] > a[high])
swap(a, (low + high) / 2, high);
if (a[low] < a[(low + high) / 2])
swap(a, (low + high) / 2, low);
2.优化不必要的交换
两侧向中间扫描时,可以将交换数据变为替换:
while (low < high) { // 两侧交替向中间扫描
while (low < high && a[high] >= pivotKey)
high--;
a[low] = a[high];
// swap(a, low, high); //比基准小的元素放到低端
while (low < high && a[low] <= pivotKey)
low++;
a[high] = a[low];
// swap(a, low, high); //比基准大的元素放到高端
}
a[low]=pivotKey; //在中间位置放回基准值
3.优化小数组时的排序方案
当数组非常小时,采用直接插入排序(简单排序中性能最好的方法)
4.优化递归操作
qSort()方法中,有两次递归操作,递归对性能有较大影响。因此,使用while循环,在第一次递归后,变量low就没有用处了,可将pivot+1赋值给low,下次循环中,partition(a, low, high)的效果等同于qSort(a, pivot + 1, high),从而可以减小堆栈的深度,提高性能。
// pivot = partition(a, low, high); // 将数列一分为二
// qSort(a, low, pivot - 1); // 对低子表排序
// qSort(a, pivot + 1, high); // 对高子表排序 //优化递归操作
while (low < high) {
pivot = partition(a, low, high); // 将数列一分为二
qSort(a, low, pivot - 1); // 对低子表排序
low = pivot + 1;
}
复杂度分析
快速排序时间性能取决于递归深度,而空间复杂度是由递归造成的栈空间的使用。递归的深度可以用递归树来描述,如{50,10,90,30,70,40,80,60,20}的递归树如下:
最优情况:
最优情况下,每次选取的基准元素都是元素中间值,partition()方法划分均匀,此时根据二叉树的性质4可以知道,排序n个元素,其递归树的深度为[log2n]+1,所以仅需要递归log2n次。
将排序n个元素的时间记为T(n),则有以下推断:
所以最优情况下的时间复杂度为:O(nlogn);同样根据递归树的深度,最优空间复杂度为O(logn)。
最坏情况:
递归树为一棵斜树,需要n-1次调用,所以最坏空间复杂度为O(logn)。在第i次调用中需要n-1次的关键字比较,所以比较次数为:Σ(n-i)=(n-1)+……+2+1=n(n-1)/2,所以最坏时间复杂度为O(n^2)。
平均情况:
平均时间复杂度:O(nlogn),平均空间复杂度O(logn)。
更多:数据结构与算法合集
【Java】 大话数据结构(15) 排序算法(2) (快速排序及其优化)的更多相关文章
- 【Java】 大话数据结构(14) 排序算法(1) (冒泡排序及其优化)
本文根据<大话数据结构>一书,实现了Java版的冒泡排序. 更多:数据结构与算法合集 基本概念 基本思想:将相邻的元素两两比较,根据大小关系交换位置,直到完成排序. 对n个数组成的无序数列 ...
- 【Java】 大话数据结构(16) 排序算法(3) (堆排序)
本文根据<大话数据结构>一书,实现了Java版的堆排序. 更多:数据结构与算法合集 基本概念 堆排序种的堆指的是数据结构中的堆,而不是内存模型中的堆. 堆:可以看成一棵完全二叉树,每个结点 ...
- 【Java】 大话数据结构(17) 排序算法(4) (归并排序)
本文根据<大话数据结构>一书,实现了Java版的归并排序. 更多:数据结构与算法合集 基本概念 归并排序:将n个记录的序列看出n个有序的子序列,每个子序列长度为1,然后不断两两排序归并,直 ...
- 【Java】 大话数据结构(18) 排序算法(5) (直接插入排序)
本文根据<大话数据结构>一书,实现了Java版的直接插入排序. 更多:数据结构与算法合集 基本概念 直接插入排序思路:类似扑克牌的排序过程,从左到右依次遍历,如果遇到一个数小于前一个数,则 ...
- Java常见排序算法之快速排序
在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let ...
- Java排序算法之快速排序
Java排序算法之快速排序 快速排序(Quicksort)是对冒泡排序的一种改进. 快速排序由C. A. R. Hoare在1962年提出.它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分 ...
- javascript数据结构与算法--高级排序算法(快速排序法,希尔排序法)
javascript数据结构与算法--高级排序算法(快速排序法,希尔排序法) 一.快速排序算法 /* * 这个函数首先检查数组的长度是否为0.如果是,那么这个数组就不需要任何排序,函数直接返回. * ...
- 【Java】 大话数据结构(11) 查找算法(2)(二叉排序树/二叉搜索树)
本文根据<大话数据结构>一书,实现了Java版的二叉排序树/二叉搜索树. 二叉排序树介绍 在上篇博客中,顺序表的插入和删除效率还可以,但查找效率很低:而有序线性表中,可以使用折半.插值.斐 ...
- Java中的数据结构及排序算法
(明天补充) 主要是3种接口:List Set Map List:ArrayList,LinkedList:顺序表ArrayList,链表LinkedList,堆栈和队列可以使用LinkedList模 ...
随机推荐
- POJ 1087 A Plug for UNIX / HDU 1526 A Plug for UNIX / ZOJ 1157 A Plug for UNIX / UVA 753 A Plug for UNIX / UVAlive 5418 A Plug for UNIX / SCU 1671 A Plug for UNIX (网络流)
POJ 1087 A Plug for UNIX / HDU 1526 A Plug for UNIX / ZOJ 1157 A Plug for UNIX / UVA 753 A Plug for ...
- 【CF706D】Vasiliy's Multiset Trie+贪心
题目大意:需要维护一种数据结构,支持以下三种操作:插入一个数,删除一个数,查询该数据结构中的数异或给定数的最大值. 题解:如果没有删除操作就是一个标准的 Trie 上贪心求最大异或和问题.现在需要支持 ...
- 关于xmlhttp会使用ie的缓存的问题及解决
在浏览器(如:IE)的客户端使用xmlhttp读取网络资源的时候,需要考虑到浏览器本地缓存的问题. 如果希望读取的数据是实时更新的,也就是不想从本地缓存中读取数据,我之前常用的方法是在请求网址后面加一 ...
- Sublime Text Ctags 安装、使用、快捷键
安装ctags应用程序. 1.到CTags的官方网站下载最新版本,将解压后的ctags.exe放到系统环境变量的搜索路径中.一般是C:\windows\system32. 如果你想放到其他文件夹中,记 ...
- list对象指针与指针类型list
#include <string> #include <cctype> #include <algorithm> #include <iostream> ...
- 管理KVM虚拟机(二)
管理KVM虚拟机 工具:libvirt 官网:http://libvirt.org/ 介绍:Libvirt 库是一种实现 Linux 虚拟化功能的 Linux® API,它支持各种虚拟机监控程序,包括 ...
- 情人节网站logo赏析
一年一度的情人节,不少网站都进行了不错的装点,我们不妨来简单浏览一下,借以触发灵感. 百度 百度的logo放上了改变,变成了一个gif,图片如下. 腾讯 淘宝 淘宝的logo同样换成了一个gif 谷歌 ...
- Mogodb 学习一
0.MongoDB和关系型数据的几个重要对象对比 MongoDB中的数据库.集合.文档 类似于关系型数据库中的数据库.表.行 MongoDB中的集合是没有模式的,所以可以存储各种各样的文档 1.启动M ...
- JavaScript 获取 flash 对象
关于js获取flash对象,网上有非常多的例子,我也尝试了不少方法. 虽然都能用,但是没有我最想要的东西, 后来看了下百度的,虽然很规范,各种情况都考虑到了,但是代码量却不是不容乐观, 前前后后将近2 ...
- Python核心编程——Chapter16
好吧,在拜读完<Python网络编程基础>之后,回头再搞一搞16章的网络编程吧. Let‘s go! 16.4.修改书上示例的TCP和UDP客户端,使得服务器的名字不要在代码里写死,要允许 ...