H - Hawawshi Decryption

对于一个给定的生成数列

R[ 0 ] 已知, (R[ i - 1 ] * a + b) % p = R[ i ] (p 是 质数), 求最小的 x 使得 R[ x ] = t

我们假设存在这样一个数列 S[ i ] = R[ i ] - v, 并且S[ i - 1] * a = S[ i ], 那么将S[ i ] = R[ i ] - v带入可得

v = b / (1-a) 那么我们能得到 R[ i ] = (R[ 0 ] - v) * a ^ n + v, 然后就是解一个高次剩余方程,

注意 a == 1 和 R[ 0 ] == v的情况需要特殊考虑。

#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ull unsigned long long using namespace std; const int N = 1e4 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + ;
const double eps = 1e-;
const double PI = acos(-); int n, x, L, R, a, b, p, T, y; struct hashTable {
int head[N+], tot;
struct node {
int val, id, nx;
} a[N+];
void init() {
memset(head, -, sizeof(head));
tot = ;
}
void Insert(int val, int id) {
int p = val % N;
a[tot].val = val;
a[tot].id = id;
a[tot].nx = head[p];
head[p] = tot++;
}
int Find(int val) {
int p = val % N;
for(int i = head[p]; ~i; i = a[i].nx)
if(a[i].val == val) return a[i].id;
return -;
}
} mp; int fastPow(int a, int b) {
int ans = ;
while(b) {
if(b & ) ans = 1ll*ans*a%p;
a = 1ll*a*a%p; b >>= ;
}
return ans;
} int BSGS(int a,int b,int p) {
if(b == ) return ;
if(a == b) return ;
if(!b) return !a ? : -;
mp.init();
int m = ceil(sqrt(p)), x = , y, z;
for(int i = ; i <= m; i++) {
x = 1ll * x * a % p;
if(mp.Find(x) == -) mp.Insert(x, i);
}
x = , y = fastPow(a, p-m-);
for(int i = ; i < m; ++i) {
z = mp.Find(1ll*x*b%p);
if(~z) return i * m + z;
x = 1ll * x * y % p;
}
return -;
} int main() {
// freopen("hawawshi.in", "r", stdin);
scanf("%d", &T);
while(T--) {
scanf("%d%d%d%d%d%d%d", &n, &x, &L, &R, &a, &b, &p);
int q = , r = R-L+;
if(a == ) {
for(int R0 = L; R0 <= R; R0++) {
int pos = 1ll*(x-R0+p)%p*fastPow(b, p-)%p;
if(pos < n) q++;
}
} else {
int v = 1ll * b * fastPow(-a+p, p-) % p;
for(int R0 = L; R0 <= R; R0++) {
if(R0 == v) {
if(R0 == x) q++;
} else {
int pos = BSGS(a, 1ll*(x-v+p)%p*fastPow((R0-v+p)%p, p-)%p, p);
if(~pos && pos < n) q++;
}
}
}
int gcd = __gcd(q, r);
printf("%d/%d\n", q/gcd, r/gcd);
}
return ;
} /*
*/

2018 Arab Collegiate Programming Contest (ACPC 2018) H - Hawawshi Decryption 数学 + BSGS的更多相关文章

  1. 2018 Arab Collegiate Programming Contest (ACPC 2018) E - Exciting Menus AC自动机

    E - Exciting Menus 建个AC自动机求个fail指针就好啦. #include<bits/stdc++.h> #define LL long long #define fi ...

  2. 2018 Arab Collegiate Programming Contest (ACPC 2018) G. Greatest Chicken Dish (线段树+GCD)

    题目链接:https://codeforces.com/gym/101991/problem/G 题意:给出 n 个数,q 次询问区间[ li,ri ]之间有多少个 GCD = di 的连续子区间. ...

  3. 2018 German Collegiate Programming Contest (GCPC 18)

    2018 German Collegiate Programming Contest (GCPC 18) Attack on Alpha-Zet 建树,求lca 代码: #include <al ...

  4. (寒假GYM开黑)2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)

    layout: post title: 2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018) author: &qu ...

  5. (寒假GYM开黑)2018 German Collegiate Programming Contest (GCPC 18)

    layout: post title: 2018 German Collegiate Programming Contest (GCPC 18) author: "luowentaoaa&q ...

  6. 2018 China Collegiate Programming Contest Final (CCPC-Final 2018)-K - Mr. Panda and Kakin-中国剩余定理+同余定理

    2018 China Collegiate Programming Contest Final (CCPC-Final 2018)-K - Mr. Panda and Kakin-中国剩余定理+同余定 ...

  7. 2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)-E. Explosion Exploit-概率+状压dp

    2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)-E. Explosion Exploit-概率+状压dp [P ...

  8. 2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)- D. Delivery Delays -二分+最短路+枚举

    2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)- D. Delivery Delays -二分+最短路+枚举 ...

  9. The Ninth Hunan Collegiate Programming Contest (2013) Problem H

    Problem H High bridge, low bridge Q: There are one high bridge and one low bridge across the river. ...

随机推荐

  1. MT【92】空间余弦定理解题

    评:学校常规课堂教学里很少讲到这个,有点可惜.

  2. 洛谷P3935 Calculating(整除分块)

    题目链接:洛谷 题目大意:定义 $f(x)=\prod^n_{i=1}(k_i+1)$,其中 $x$ 分解质因数结果为 $x=\prod^n_{i=1}{p_i}^{k_i}$.求 $\sum^r_{ ...

  3. 【bzoj3932】 CQOI2015—任务查询系统

    http://www.lydsy.com/JudgeOnline/problem.php?id=3932 (题目链接) 题意 给出$m$个区间,每个区间有一个权值,$n$组询问,每次询问在位置$x$权 ...

  4. [APIO2018] Duathlon 铁人两项

    不经过重点,考虑点双 点双,考虑圆方树 两个点s,t,中间路径上,所有点双里的点都可以经过,特别地,s,t作为割点的时候,不能往后走,也就是不能经过身后的方点 也就是,(s,t)经过树上路径上的所有圆 ...

  5. JS控制form表单action去向

    http://blog.csdn.net/w709854369/article/details/6261624 不知道大家遇没遇到这种情况,当我们提交一个表单的时候,可能因为相关的参数不同而需提交给不 ...

  6. Vue实例的生命周期(钩子函数)

    Vue实例的生命钩子总共有10个 先上官方图: 下面时一个vue实例定义钩子函数的例子: var app=new Vue({ el:'#app', beforeCreate:function(){ c ...

  7. DataGridView刷新数据

    在DataGridView上操作数据之后,无论是增删改都是对数据库进行了操作,而DataGridView这个控件在操作之后是不会变化的,需要重新的去数据库里读取一下数据才行,可以理解为之刷新 Data ...

  8. 谷歌AMP和百度MIP是什么鬼?

    首先我们来看定义: 谷歌AMP(Accelerated Mobile Pages,加速移动页面)是Google推出的一种为静态内容构建 web 页面,提供可靠和快速的渲染,加快页面加载的时间,特别是在 ...

  9. bzoj千题计划289:bzoj 2707: [SDOI2012]走迷宫

    http://www.lydsy.com/JudgeOnline/problem.php?id=2707 dp[i] 表示从点i到终点的期望步数 dp[i]= Σ (dp[j]+1)/out[i] j ...

  10. Struts2_day01

    一.内容大纲 1 struts2概述 (1)应用在web层 2 struts2入门案例 3 struts2底层执行过程 4 struts2相关配置 (1)struts.xml配置 - package. ...