The set [1,2,3,...,n] contains a total of n! unique permutations.

By listing and labeling all of the permutations in order, we get the following sequence for n = 3:

  1. "123"
  2. "132"
  3. "213"
  4. "231"
  5. "312"
  6. "321"

Given n and k, return the kth permutation sequence.

Note:

  • Given n will be between 1 and 9 inclusive.
  • Given k will be between 1 and n! inclusive.

Example 1:

Input: n = 3, k = 3
Output: "213"

Example 2:

Input: n = 4, k = 9
Output: "2314"

By observing the sequence for n = 3, we can see the permutation sequence is 1 + [2, 3] permutation, 2 + [1, 3] permutation, 3 + [1, 2] permutation. The sequence with first element = 1 has value k = 1, 2, with first element = 2 has value 3, 4, with first elemnt = 3 has value 5, 6, it's not hard to see that the index of the first element is (k-1)/2!

Next, we want to find the first element for n = 2, since there is only 2! permutation, the new k would be in the range [1, 2!],  if you observe the original k and the permutation:

[2, 3] k = 0 -> new k = 0

[3, 2] k = 1 -> new k = 1

[1, 3] k = 2 -> new k = 0

[3, 1] k = 3 -> new k = 1

[1, 2] k = 4 -> new k = 0

[2, 1] k = 5 -> new k = 1

new k = old k / 2!, it's just the same problem, with smaller n and k, hence we can use either recursive or iterative to solve it.

Key taken: --k, which makes the caculation easier also rules easier to observe, if k == 0, it's the first sequence in the permutation, no further work needed.

Time complexity: O(n*2)

Iterative:

public class PermutationSequenceLT60 {
private int calculateFactorial(int n) {
int factorial = 1;
for(int i = 2; i <= n; ++i) {
factorial *= i;
}
return factorial;
} public String permutation(int n, int k) {
StringBuilder result = new StringBuilder(); List<Integer> nums = new LinkedList<>();
for(int i = 1; i <= n; ++i) {
nums.add(i);
} int factorial = calculateFactorial(n); --k;
for(int i = n; k > 0 && i >= 1; --i) {
factorial = factorial/i;
int pos = k/factorial;
result.append(nums.remove(pos));
k = k%factorial;
} for(int num: nums) {
result.append(num);
} return result.toString();
} public static void main(String[] args) {
PermutationSequenceLT60 p = new PermutationSequenceLT60();
System.out.println(p.permutation(4, 9));
for(int i = 1; i <= 6; ++i) {
System.out.println(p.permutation(3, i));
}
for(int i = 1; i<= 24; ++i) {
System.out.println(p.permutation(4, i));
}
}
}

Recursive:

public class PermutationSequenceLT60 {
private int calculateFactorial(int n) {
int factorial = 1;
for(int i = 2; i <= n; ++i) {
factorial *= i;
}
return factorial;
} private void permutationHelper(int k, List<Integer> nums, StringBuilder result, int factorial) {
if(k == 0) {
for(int num: nums) {
result.append(num);
}
return;
} int pos = k/factorial;
result.append(nums.remove(pos));
permutationHelper(k%factorial, nums, result, factorial/nums.size());
} public String permutation(int n, int k) {
StringBuilder result = new StringBuilder(); List<Integer> nums = new LinkedList<>();
for(int i = 1; i <= n; ++i) {
nums.add(i);
} int factorial = calculateFactorial(n-1);
permutationHelper(k-1, nums, result, factorial); return result.toString();
} public static void main(String[] args) {
PermutationSequenceLT60 p = new PermutationSequenceLT60();
System.out.println(p.permutation(4, 9));
for(int i = 1; i <= 6; ++i) {
System.out.println(p.permutation(3, i));
}
for(int i = 1; i<= 24; ++i) {
System.out.println(p.permutation(4, i));
}
}
}

Permutation Sequence LT60的更多相关文章

  1. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  2. [LeetCode] Permutation Sequence 序列排序

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  3. Leetcode 60. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  4. 【leetcode】 Permutation Sequence (middle)

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  5. 60. Permutation Sequence

    题目: The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of t ...

  6. [Leetcode] Permutation Sequence

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  7. [LeetCode] “全排列”问题系列(二) - 基于全排列本身的问题,例题: Next Permutation , Permutation Sequence

    一.开篇 既上一篇<交换法生成全排列及其应用> 后,这里讲的是基于全排列 (Permutation)本身的一些问题,包括:求下一个全排列(Next Permutation):求指定位置的全 ...

  8. leetcode总结:permutations, permutations II, next permutation, permutation sequence

    Next Permutation: Implement next permutation, which rearranges numbers into the lexicographically ne ...

  9. Java for LeetCode 060 Permutation Sequence

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

随机推荐

  1. python学习day7 数据类型及内置方法补充

    http://www.cnblogs.com/linhaifeng/articles/7133357.html#_label4 1.列表类型 用途:记录多个值(一般存放同属性的值) 定义方法 在[]内 ...

  2. Python Flask学习

    开了一个新坑..一直以来对web的前端后端了解比较模糊,所以打算学一个后端框架,写个小博客什么的增长一下姿势水平. 初学嘛,选个相对轻量级一点的,就决定学习flask啦.

  3. Linux下鼠标滚轮速度调整

    安装imwheel 于home下创建.imwheelrc gedit ~/.imwheelrc 在.imwheelrc中粘贴以下内容 ".*" None, Up, Button4, ...

  4. C# 写App.config配置文件的方法

    private static void AccessAppSettings() { //获取Configuration对象 Configuration config = ConfigurationMa ...

  5. Session和Cookie的理解

    原文地址:https://juejin.im/post/5aede266f265da0ba266e0ef

  6. http://www.bugku.com:Bugku——jsfuckWEB5(http://120.24.86.145:8002/web5/index.php)

      今天又做了bugku上面的一道题.使用到了jsfuck,它是什么捏?   它是Javascript原子化的一种简易表达方式,用[]()!+就可以表示所有的Javascript字符,不依赖于浏览器. ...

  7. 使用vue-cli快速搭建大型单页应用

    前言: 经过一段时间angular的洗礼之后 ,还是决定回归Vue.现就vue安装.工程搭建.常用依赖安装直至开发挣个流程做一整理,希望对初学者有所帮助. 前提条件: 对 Node.js 和相关构建工 ...

  8. Django的Rbac介绍1

    1.django的权限管理叫做RBAC 我们在百度上查看RBAC的概念如下 基于角色的权限访问控制(Role-Based Access Control)作为传统访问控制(自主访问,强制访问)的有前景的 ...

  9. selenium学习一

    chrome版本和chromedriver的对应关系 chromedriver版本 支持的Chrome版本 v2.40 v66-68 v2.39 v66-68 v2.38 v65-67 v2.37 v ...

  10. HW3 纠结的心得

    改好的controller //yuec2 Yue Cheng package hw3; import java.io.File; import java.text.DecimalFormat; im ...