java LinkedList(链表)
LinkedList也像ArrayList一样实现了基本的List接口,但是它执行某些操作(在List的中间插入和移除)时比ArrayList更高效,但在随机访问方面却要逊色一些
LinkedList还添加了可以使其用作栈,队列或双端队列的方法
这些方法有些彼此之间只是名称有差异,或者只是存在些许差异,以使得这些名字在特定用法的上下文环境中更加适用(特别使在Queun中),例如
getFirst()和element()完全一样,它们都返回列表的头(第一个元素),而不是移除它,如果List为空,则抛出NoSuchElementException. peek()方法与这两个方式只是稍有差异,它在列表为空时返回null
removeFirst()与remove()也是完全一样,它们移除并返回列表的头,而在列表为空时抛出NoSuchElementException. poll()稍有差异,它在列表为空时返回null
addFirst()与add()和addList()相同,它们都将某个元素插入到列表的尾(端)部.
removeLast()移除并返回列表的最后一个元素
//: holding/LinkedListFeatures.java
package object;
import typeinfo.pets.*;
import java.util.*;
import static net.mindview.util.Print.*; public class LinkedListFeatures {
public static void main(String[] args) {
LinkedList<Pet> pets =
new LinkedList<Pet>(Pets.arrayList(5));
print(pets);
// Identical:
print("pets.getFirst(): " + pets.getFirst());
print("pets.element(): " + pets.element());
// Only differs in empty-list behavior:
print("pets.peek(): " + pets.peek());
// Identical; remove and return the first element:
print("pets.remove(): " + pets.remove());
print("pets.removeFirst(): " + pets.removeFirst());
// Only differs in empty-list behavior:
print("pets.poll(): " + pets.poll());
print(pets);
pets.addFirst(new Rat());
print("After addFirst(): " + pets);
pets.offer(Pets.randomPet());
print("After offer(): " + pets);
pets.add(Pets.randomPet());
print("After add(): " + pets);
pets.addLast(new Hamster());
print("After addLast(): " + pets);
print("pets.removeLast(): " + pets.removeLast());
}
} /* Output:
[Rat, Manx, Cymric, Mutt, Pug]
pets.getFirst(): Rat
pets.element(): Rat
pets.peek(): Rat
pets.remove(): Rat
pets.removeFirst(): Manx
pets.poll(): Cymric
[Mutt, Pug]
After addFirst(): [Rat, Mutt, Pug]
After offer(): [Rat, Mutt, Pug, Cymric]
After add(): [Rat, Mutt, Pug, Cymric, Pug]
After addLast(): [Rat, Mutt, Pug, Cymric, Pug, Hamster]
pets.removeLast(): Hamster
*///:~
java Linkedlist类
package java.util; import java.util.function.Consumer;
public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
transient int size = 0;
transient Node<E> first;
transient Node<E> last;
public LinkedList() {
}
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}
private void linkFirst(E e) {
final Node<E> f = first;
final Node<E> newNode = new Node<>(null, e, f);
first = newNode;
if (f == null)
last = newNode;
else
f.prev = newNode;
size++;
modCount++;
}
void linkLast(E e) {
final Node<E> l = last;
final Node<E> newNode = new Node<>(l, e, null);
last = newNode;
if (l == null)
first = newNode;
else
l.next = newNode;
size++;
modCount++;
}
void linkBefore(E e, Node<E> succ) {
// assert succ != null;
final Node<E> pred = succ.prev;
final Node<E> newNode = new Node<>(pred, e, succ);
succ.prev = newNode;
if (pred == null)
first = newNode;
else
pred.next = newNode;
size++;
modCount++;
}
private E unlinkFirst(Node<E> f) {
// assert f == first && f != null;
final E element = f.item;
final Node<E> next = f.next;
f.item = null;
f.next = null; // help GC
first = next;
if (next == null)
last = null;
else
next.prev = null;
size--;
modCount++;
return element;
}
private E unlinkLast(Node<E> l) {
// assert l == last && l != null;
final E element = l.item;
final Node<E> prev = l.prev;
l.item = null;
l.prev = null; // help GC
last = prev;
if (prev == null)
first = null;
else
prev.next = null;
size--;
modCount++;
return element;
}
E unlink(Node<E> x) {
// assert x != null;
final E element = x.item;
final Node<E> next = x.next;
final Node<E> prev = x.prev; if (prev == null) {
first = next;
} else {
prev.next = next;
x.prev = null;
} if (next == null) {
last = prev;
} else {
next.prev = prev;
x.next = null;
} x.item = null;
size--;
modCount++;
return element;
}
public E getFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return f.item;
}
public E getLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return l.item;
}
public E removeFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return unlinkFirst(f);
}
public E removeLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return unlinkLast(l);
}
public void addFirst(E e) {
linkFirst(e);
}
public void addLast(E e) {
linkLast(e);
}
public boolean contains(Object o) {
return indexOf(o) != -1;
}
public int size() {
return size;
}
public boolean add(E e) {
linkLast(e);
return true;
}
public boolean remove(Object o) {
if (o == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null) {
unlink(x);
return true;
}
}
} else {
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item)) {
unlink(x);
return true;
}
}
}
return false;
}
public boolean addAll(Collection<? extends E> c) {
return addAll(size, c);
}
public boolean addAll(int index, Collection<? extends E> c) {
checkPositionIndex(index); Object[] a = c.toArray();
int numNew = a.length;
if (numNew == 0)
return false; Node<E> pred, succ;
if (index == size) {
succ = null;
pred = last;
} else {
succ = node(index);
pred = succ.prev;
} for (Object o : a) {
@SuppressWarnings("unchecked") E e = (E) o;
Node<E> newNode = new Node<>(pred, e, null);
if (pred == null)
first = newNode;
else
pred.next = newNode;
pred = newNode;
} if (succ == null) {
last = pred;
} else {
pred.next = succ;
succ.prev = pred;
} size += numNew;
modCount++;
return true;
}
public void clear() {
// Clearing all of the links between nodes is "unnecessary", but:
// - helps a generational GC if the discarded nodes inhabit
// more than one generation
// - is sure to free memory even if there is a reachable Iterator
for (Node<E> x = first; x != null; ) {
Node<E> next = x.next;
x.item = null;
x.next = null;
x.prev = null;
x = next;
}
first = last = null;
size = 0;
modCount++;
}
// Positional Access Operations
public E get(int index) {
checkElementIndex(index);
return node(index).item;
}
public E set(int index, E element) {
checkElementIndex(index);
Node<E> x = node(index);
E oldVal = x.item;
x.item = element;
return oldVal;
}
public void add(int index, E element) {
checkPositionIndex(index); if (index == size)
linkLast(element);
else
linkBefore(element, node(index));
}
public E remove(int index) {
checkElementIndex(index);
return unlink(node(index));
}
private boolean isElementIndex(int index) {
return index >= 0 && index < size;
}
private boolean isPositionIndex(int index) {
return index >= 0 && index <= size;
}
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+size;
}
private void checkElementIndex(int index) {
if (!isElementIndex(index))
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private void checkPositionIndex(int index) {
if (!isPositionIndex(index))
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
Node<E> node(int index) {
// assert isElementIndex(index);
if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
public int indexOf(Object o) {
int index = 0;
if (o == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null)
return index;
index++;
}
} else {
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item))
return index;
index++;
}
}
return -1;
}
public int lastIndexOf(Object o) {
int index = size;
if (o == null) {
for (Node<E> x = last; x != null; x = x.prev) {
index--;
if (x.item == null)
return index;
}
} else {
for (Node<E> x = last; x != null; x = x.prev) {
index--;
if (o.equals(x.item))
return index;
}
}
return -1;
}
// Queue operations.
public E peek() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}
public E element() {
return getFirst();
}
public E poll() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}
public E remove() {
return removeFirst();
}
public boolean offer(E e) {
return add(e);
}
public boolean offerFirst(E e) {
addFirst(e);
return true;
}
public boolean offerLast(E e) {
addLast(e);
return true;
}
public E peekFirst() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}
public E peekLast() {
final Node<E> l = last;
return (l == null) ? null : l.item;
}
public E pollFirst() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}
public E pollLast() {
final Node<E> l = last;
return (l == null) ? null : unlinkLast(l);
}
public void push(E e) {
addFirst(e);
}
public E pop() {
return removeFirst();
}
public boolean removeFirstOccurrence(Object o) {
return remove(o);
}
public boolean removeLastOccurrence(Object o) {
if (o == null) {
for (Node<E> x = last; x != null; x = x.prev) {
if (x.item == null) {
unlink(x);
return true;
}
}
} else {
for (Node<E> x = last; x != null; x = x.prev) {
if (o.equals(x.item)) {
unlink(x);
return true;
}
}
}
return false;
}
public ListIterator<E> listIterator(int index) {
checkPositionIndex(index);
return new ListItr(index);
} private class ListItr implements ListIterator<E> {
private Node<E> lastReturned;
private Node<E> next;
private int nextIndex;
private int expectedModCount = modCount; ListItr(int index) {
// assert isPositionIndex(index);
next = (index == size) ? null : node(index);
nextIndex = index;
} public boolean hasNext() {
return nextIndex < size;
} public E next() {
checkForComodification();
if (!hasNext())
throw new NoSuchElementException(); lastReturned = next;
next = next.next;
nextIndex++;
return lastReturned.item;
} public boolean hasPrevious() {
return nextIndex > 0;
} public E previous() {
checkForComodification();
if (!hasPrevious())
throw new NoSuchElementException(); lastReturned = next = (next == null) ? last : next.prev;
nextIndex--;
return lastReturned.item;
} public int nextIndex() {
return nextIndex;
} public int previousIndex() {
return nextIndex - 1;
} public void remove() {
checkForComodification();
if (lastReturned == null)
throw new IllegalStateException(); Node<E> lastNext = lastReturned.next;
unlink(lastReturned);
if (next == lastReturned)
next = lastNext;
else
nextIndex--;
lastReturned = null;
expectedModCount++;
} public void set(E e) {
if (lastReturned == null)
throw new IllegalStateException();
checkForComodification();
lastReturned.item = e;
} public void add(E e) {
checkForComodification();
lastReturned = null;
if (next == null)
linkLast(e);
else
linkBefore(e, next);
nextIndex++;
expectedModCount++;
} public void forEachRemaining(Consumer<? super E> action) {
Objects.requireNonNull(action);
while (modCount == expectedModCount && nextIndex < size) {
action.accept(next.item);
lastReturned = next;
next = next.next;
nextIndex++;
}
checkForComodification();
} final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
} private static class Node<E> {
E item;
Node<E> next;
Node<E> prev; Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
public Iterator<E> descendingIterator() {
return new DescendingIterator();
}
private class DescendingIterator implements Iterator<E> {
private final ListItr itr = new ListItr(size());
public boolean hasNext() {
return itr.hasPrevious();
}
public E next() {
return itr.previous();
}
public void remove() {
itr.remove();
}
} @SuppressWarnings("unchecked")
private LinkedList<E> superClone() {
try {
return (LinkedList<E>) super.clone();
} catch (CloneNotSupportedException e) {
throw new InternalError(e);
}
}
public Object clone() {
LinkedList<E> clone = superClone(); // Put clone into "virgin" state
clone.first = clone.last = null;
clone.size = 0;
clone.modCount = 0; // Initialize clone with our elements
for (Node<E> x = first; x != null; x = x.next)
clone.add(x.item); return clone;
}
public Object[] toArray() {
Object[] result = new Object[size];
int i = 0;
for (Node<E> x = first; x != null; x = x.next)
result[i++] = x.item;
return result;
}
@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
if (a.length < size)
a = (T[])java.lang.reflect.Array.newInstance(
a.getClass().getComponentType(), size);
int i = 0;
Object[] result = a;
for (Node<E> x = first; x != null; x = x.next)
result[i++] = x.item; if (a.length > size)
a[size] = null; return a;
} private static final long serialVersionUID = 876323262645176354L;
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
// Write out any hidden serialization magic
s.defaultWriteObject(); // Write out size
s.writeInt(size); // Write out all elements in the proper order.
for (Node<E> x = first; x != null; x = x.next)
s.writeObject(x.item);
}
@SuppressWarnings("unchecked")
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in any hidden serialization magic
s.defaultReadObject(); // Read in size
int size = s.readInt(); // Read in all elements in the proper order.
for (int i = 0; i < size; i++)
linkLast((E)s.readObject());
}
@Override
public Spliterator<E> spliterator() {
return new LLSpliterator<E>(this, -1, 0);
} /** A customized variant of Spliterators.IteratorSpliterator */
static final class LLSpliterator<E> implements Spliterator<E> {
static final int BATCH_UNIT = 1 << 10; // batch array size increment
static final int MAX_BATCH = 1 << 25; // max batch array size;
final LinkedList<E> list; // null OK unless traversed
Node<E> current; // current node; null until initialized
int est; // size estimate; -1 until first needed
int expectedModCount; // initialized when est set
int batch; // batch size for splits LLSpliterator(LinkedList<E> list, int est, int expectedModCount) {
this.list = list;
this.est = est;
this.expectedModCount = expectedModCount;
} final int getEst() {
int s; // force initialization
final LinkedList<E> lst;
if ((s = est) < 0) {
if ((lst = list) == null)
s = est = 0;
else {
expectedModCount = lst.modCount;
current = lst.first;
s = est = lst.size;
}
}
return s;
} public long estimateSize() { return (long) getEst(); } public Spliterator<E> trySplit() {
Node<E> p;
int s = getEst();
if (s > 1 && (p = current) != null) {
int n = batch + BATCH_UNIT;
if (n > s)
n = s;
if (n > MAX_BATCH)
n = MAX_BATCH;
Object[] a = new Object[n];
int j = 0;
do { a[j++] = p.item; } while ((p = p.next) != null && j < n);
current = p;
batch = j;
est = s - j;
return Spliterators.spliterator(a, 0, j, Spliterator.ORDERED);
}
return null;
} public void forEachRemaining(Consumer<? super E> action) {
Node<E> p; int n;
if (action == null) throw new NullPointerException();
if ((n = getEst()) > 0 && (p = current) != null) {
current = null;
est = 0;
do {
E e = p.item;
p = p.next;
action.accept(e);
} while (p != null && --n > 0);
}
if (list.modCount != expectedModCount)
throw new ConcurrentModificationException();
} public boolean tryAdvance(Consumer<? super E> action) {
Node<E> p;
if (action == null) throw new NullPointerException();
if (getEst() > 0 && (p = current) != null) {
--est;
E e = p.item;
current = p.next;
action.accept(e);
if (list.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
return false;
} public int characteristics() {
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
}
} }
java LinkedList(链表)的更多相关文章
- java集合之linkedList链表基础
LinkedList链表: List接口的链接列表实现.允许存储所有元素(包含null).使用频繁增删元素. linkedList方法: void addFirst(E e) 指定元素插入列表的开头 ...
- java实现链表
单链表 package com.voole.linkedlist; public class Test { public static void main(String[] args) { Linke ...
- Java LinkedList【笔记】
Java LinkedList[笔记] LinkedList LinkedList 适用于要求有顺序,并且会按照顺序进行迭代的场景,依赖于底层的链表结构 LinkedList基本结构 LinkedLi ...
- java LinkedList (详解)
Java 链表(LinkedList) 一.链表简介 1.链表 (Linked List) 是一种常见的基础数据结构,是一种线性表,但是链表不会按线性表的顺序存储数据,而是每个节点里存到下一个节点的地 ...
- java数据结构链表(纯面向对象的方式)
//Node.java //LinkedList.java _____ //测试类 [lcy, haha] 1 lcy 删除的对象是 1[lcy, haha] lcy
- JAVA单向链表实现
JAVA单向链表实现 单向链表 链表和数组一样是一种最常用的线性数据结构,两者各有优缺点.数组我们知道是在内存上的一块连续的空间构成,所以其元素访问可以通过下标进行,随机访问速度很快,但数组也有其缺点 ...
- Java单链表反转 详细过程
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/guyuealian/article/details/51119499 Java单链表反转 Java实 ...
- Java 单向链表学习
Java 单向链表学习 链表等同于动态的数组:可以不同设定固定的空间,根据需要的内容动态的改变链表的占用空间和动态的数组同一形式:链表的使用可以更加便于操作. 链表的基本结构包括:链表工具类和节点类, ...
- java 单链表 练习
练习一下java单链表的简单习题 package com.test1; import java.util.Stack; public class SingleListDemo { /** * 返回单链 ...
随机推荐
- Delphi 关于DBGrid多选删除(shitf多选,ctrl多选)
////删除多选记录 procedure THistoryForm.DeleteButtonClick(Sender: TObject);var tempBookMark:TbookMark; i ...
- Spring之AOP实现原理
- C#解析数组形式的json数据
在学习时遇到把解析json数据的问题,网上也搜了很多资料才得以实现,记录下来以便翻阅. 1. 下载开源的类库Newtonsoft.Json(下载地址http://json.codeplex.com/, ...
- BZOJ2749 HAOI2012外星人(数论)
不妨把求φ抽象成把将每个位置上的一个小球左移一格并分裂的过程,那么即求所有球都被移到1号格子的步数. 显然要达到1必须先到达2.可以发现每次分裂一定会分裂出2号位的球,因为2以外的质数一定是奇数.以及 ...
- 51nod 1102 面积最大的矩形 (单调栈)
链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1102 思路: 首先介绍下单调栈的功能:利用单调栈,可以找到从左/ ...
- 【转】如何向XML内插入一个字符串片段
转自:http://bbs.csdn.net/topics/190051229 5楼 string filepath = Server.MapPath("你的xml文件"); ...
- MT【84】夹逼定值
分析:此类题还是比较常见的,左右都有不等式,中间夹着一个式子,我们可以找个$x$使得中间式子满足的条件显示出来. 类似的方法可以用在这道浙江高考文科压轴题上
- 【BZOJ1449】[JSOI2009]球队收益(网络流,费用流)
[BZOJ1449][JSOI2009]球队收益(网络流,费用流) 题面 BZOJ 洛谷 题解 首先对于一支队伍而言,总共进行多少场比赛显然是已知的,假设是\(n_i\)场,那么它的贡献是:\(C_i ...
- 【BZOJ1081】[SCOI2005]超级格雷码(搜索)
[BZOJ1081][SCOI2005]超级格雷码(搜索) 题面 BZOJ 洛谷 题解 找个规律吧,自己随便手玩一下,就按照正常的顺序枚举一下,发现分奇偶位考虑正序还是逆序就好了. #include& ...
- 踩坑记(1)——使用slf4j+logback记录日志
刚开始的jar包版本如下,因为选择jar包版本不同导致的一些坑,踩过了就记录下来: <spring.version>3.1.0.RELEASE</spring.version> ...