解题:JSOI 2011 柠檬
显然分出来的每段两端颜色相同,否则把一边归给旁边的答案不变劣,于是可以$O(n^2)$地dp了:设$dp[i]$表示到第$i$个位置为止的最优解,$dp[i]=dp[j]+a[i]*(s[j]-s[i]+1)^2$ $[a[i]==a[j]]$,其中s是每种颜色出现次数的前缀和
写成斜率的形式,然后发现对每个颜色来说,斜率$k=a_i*s_i$单增,横坐标$x=2*(s_j-1)$单增,对每个颜色用单调栈维护上凸壳并在上面二分求解
#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
#define lli long long
using namespace std;
const int N=,M=;
int n,a[N],s[N],sz[M];
lli dp[N]; vector<int> stk[M];
int Top(int x)
{
return *stk[x].rbegin();
}
int Sec(int x)
{
return stk[x][stk[x].size()-];
}
int Spare(int x)
{
return stk[x].size()>=;
}
lli Calc(int x,int y)
{
return dp[x-]+1ll*a[x]*y*y;
}
int Point(int x,int y)
{
int l=,r=n,ret=n+;
while(l<=r)
{
int mid=(l+r)/;
if(Calc(x,mid-s[x]+)>=Calc(y,mid-s[y]+)) ret=mid,r=mid-;
else l=mid+;
}
return ret;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
for(int i=;i<=n;i++)
{
int x=a[i];
s[i]=++sz[x];
while(Spare(x)&&Point(Sec(x),Top(x))<=Point(Top(x),i))
stk[x].pop_back();
stk[x].push_back(i);
while(Spare(x)&&Point(Sec(x),Top(x))<=s[i])
stk[x].pop_back();
dp[i]=Calc(Top(x),s[i]-s[Top(x)]+);
}
printf("%lld",dp[n]);
return ;
}
解题:JSOI 2011 柠檬的更多相关文章
- [JSOI 2011]分特产
Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望 ...
- 【JSOI 2011】 分特产
[题目链接] 点击打开链接 [算法] 考虑求每个人可以不分的方案 那么,对于每件物品,我们把它分成n份,每一份对应分给每一个人,有C(a[i]+n-1,m-1)种方案,而总方案数就是每种 物品方案数的 ...
- [总结]一些 DP 优化方法
目录 注意本文未完结 写在前面 矩阵快速幂优化 前缀和优化 two-pointer 优化 决策单调性对一类 1D/1D DP 的优化 \(w(i,j)\) 只含 \(i\) 和 \(j\) 的项--单 ...
- 2011 ACM-ICPC 成都赛区解题报告(转)
2011 ACM-ICPC 成都赛区解题报告 首先对F题出了陈题表示万分抱歉,我们都没注意到在2009哈尔滨赛区曾出过一模一样的题.其他的话,这套题还是非常不错的,除C之外的9道题都有队伍AC,最终冠 ...
- CrackME 2011 # 2 逆向练习解题思路
CrackME 2011 # 2 逆向练习解题思路 做题背景: 从朋友那里得到一道逆向题名字叫package,作为小菜的我当然要看一看啦,这名字辨识度太低我就按照运行的名字改成CrackME 2011 ...
- 解题:SDOI 2011 消耗战
题面 本身求答案是简单的树上DP,只需要求出根到每个点路径上的最小值,然后考虑割连父亲的边还是割所有儿子即可,但是每次都这样做一次显然不能通过,考虑优化 用虚树来优化:虚树是针对树上一些点建出来的一棵 ...
- 解题:BZOJ 2673 World Final 2011 Chips Challenge
题面 数据范围看起来很像网络流诶(滚那 因为限制多而且强,数据范围也不大,我们考虑不直接求答案,而是转化为判定问题 可以发现第二个限制相对好满足,我们直接枚举这个限制就可以.具体来说是枚举所有行中的最 ...
- 解题:POI 2011 Dynamite
题面 从零开始的DP学习系列之叁 树形DP的基本(常见?)思路:先递归进儿子,然后边回溯边决策,设状态时常设$dp[x]$表示以$x$为根的子树中(具体分析算不算$x$这个点)的情况 显然的二分答案, ...
- 解题:JSOI 2016 最佳团体
题面 0/1分数规划+树形背包检查 要求$\frac{\sum P_i}{\sum S_i}的最大值,$按照0/1分数规划的做法,二分一个mid之后把式子化成$\sum P_i=\sum S_i*mi ...
随机推荐
- android studio更新gradle失败的解决办法-转
android studio中每次自动更新gradle时速度实在太慢因为gradle服务器比较慢,所以更新gradle会比较慢,建议先下载下来,然后手动添加到gradle的下载目录,提升速度. 使用下 ...
- c# Findwindow sendMessage
using System; using System.Collections.Generic; using System.Text; using System.Runtime.InteropServi ...
- mfc c++字符串类与 流输出
一.命名空间 所谓命名空间(namespace),是指标识符的各种可见范围.C++标准程序库中的所有标识符都被定义于一个名为std的命名空间(namespace)中.而我们要使用的string类也是一 ...
- lm393
电压比较芯片,供电电压和输出电压一致.
- 编译安装php时遇到virtual memory exhausted: Cannot allocate memory
有时候用vps建站时需要通过编译的方式来安装主机控制面板.对于大内存的VPS来说一般问题不大,但是对于小内存,比如512MB内存的godaddy VPS来说,很有可能会出现问题,因为编译过程是一个内存 ...
- shell脚本事例 -- 获取当前日期的前一天日期
记录一个shell脚本事例,事例中包括shell的一些语法(函数定义.表达式运算.if.case...) #!/bin/sh #获取当前时间 RUN_TIME=`date +%H%M%S` #取当前日 ...
- 4.Xilinx RapidIO核详解
转自https://www.cnblogs.com/liujinggang/p/10072115.html 一.RapidIO核概述 RapidIO核的设计标准来源于RapidIO Interconn ...
- BCompare破解方法
1.删除 BCUnrar.dll 文件,重启软件. 备注:使用everything搜索BCUnrar.dll
- jmeter-如何在JDBC Request中添加多条语句执行
1.JDBC Connection Configuration中配置Database URL时在URL后面添加 ?allowMultiQueries=true 2.JDBC Request中添加语句 ...
- 用Unity简单实现第三人称人物的移动和转向
上图不重要,因为实现人物的移动用的是动画,没有什么可说的,主要是下面实现人物的转向. 比如在一个平面中,玩家按了w和d键则人物会面向右前方向前进,如果此时玩家按了a和s键则人物会面向左后方向前进,那么 ...