解题:JSOI 2011 柠檬
显然分出来的每段两端颜色相同,否则把一边归给旁边的答案不变劣,于是可以$O(n^2)$地dp了:设$dp[i]$表示到第$i$个位置为止的最优解,$dp[i]=dp[j]+a[i]*(s[j]-s[i]+1)^2$ $[a[i]==a[j]]$,其中s是每种颜色出现次数的前缀和
写成斜率的形式,然后发现对每个颜色来说,斜率$k=a_i*s_i$单增,横坐标$x=2*(s_j-1)$单增,对每个颜色用单调栈维护上凸壳并在上面二分求解
#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
#define lli long long
using namespace std;
const int N=,M=;
int n,a[N],s[N],sz[M];
lli dp[N]; vector<int> stk[M];
int Top(int x)
{
return *stk[x].rbegin();
}
int Sec(int x)
{
return stk[x][stk[x].size()-];
}
int Spare(int x)
{
return stk[x].size()>=;
}
lli Calc(int x,int y)
{
return dp[x-]+1ll*a[x]*y*y;
}
int Point(int x,int y)
{
int l=,r=n,ret=n+;
while(l<=r)
{
int mid=(l+r)/;
if(Calc(x,mid-s[x]+)>=Calc(y,mid-s[y]+)) ret=mid,r=mid-;
else l=mid+;
}
return ret;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
for(int i=;i<=n;i++)
{
int x=a[i];
s[i]=++sz[x];
while(Spare(x)&&Point(Sec(x),Top(x))<=Point(Top(x),i))
stk[x].pop_back();
stk[x].push_back(i);
while(Spare(x)&&Point(Sec(x),Top(x))<=s[i])
stk[x].pop_back();
dp[i]=Calc(Top(x),s[i]-s[Top(x)]+);
}
printf("%lld",dp[n]);
return ;
}
解题:JSOI 2011 柠檬的更多相关文章
- [JSOI 2011]分特产
Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望 ...
- 【JSOI 2011】 分特产
[题目链接] 点击打开链接 [算法] 考虑求每个人可以不分的方案 那么,对于每件物品,我们把它分成n份,每一份对应分给每一个人,有C(a[i]+n-1,m-1)种方案,而总方案数就是每种 物品方案数的 ...
- [总结]一些 DP 优化方法
目录 注意本文未完结 写在前面 矩阵快速幂优化 前缀和优化 two-pointer 优化 决策单调性对一类 1D/1D DP 的优化 \(w(i,j)\) 只含 \(i\) 和 \(j\) 的项--单 ...
- 2011 ACM-ICPC 成都赛区解题报告(转)
2011 ACM-ICPC 成都赛区解题报告 首先对F题出了陈题表示万分抱歉,我们都没注意到在2009哈尔滨赛区曾出过一模一样的题.其他的话,这套题还是非常不错的,除C之外的9道题都有队伍AC,最终冠 ...
- CrackME 2011 # 2 逆向练习解题思路
CrackME 2011 # 2 逆向练习解题思路 做题背景: 从朋友那里得到一道逆向题名字叫package,作为小菜的我当然要看一看啦,这名字辨识度太低我就按照运行的名字改成CrackME 2011 ...
- 解题:SDOI 2011 消耗战
题面 本身求答案是简单的树上DP,只需要求出根到每个点路径上的最小值,然后考虑割连父亲的边还是割所有儿子即可,但是每次都这样做一次显然不能通过,考虑优化 用虚树来优化:虚树是针对树上一些点建出来的一棵 ...
- 解题:BZOJ 2673 World Final 2011 Chips Challenge
题面 数据范围看起来很像网络流诶(滚那 因为限制多而且强,数据范围也不大,我们考虑不直接求答案,而是转化为判定问题 可以发现第二个限制相对好满足,我们直接枚举这个限制就可以.具体来说是枚举所有行中的最 ...
- 解题:POI 2011 Dynamite
题面 从零开始的DP学习系列之叁 树形DP的基本(常见?)思路:先递归进儿子,然后边回溯边决策,设状态时常设$dp[x]$表示以$x$为根的子树中(具体分析算不算$x$这个点)的情况 显然的二分答案, ...
- 解题:JSOI 2016 最佳团体
题面 0/1分数规划+树形背包检查 要求$\frac{\sum P_i}{\sum S_i}的最大值,$按照0/1分数规划的做法,二分一个mid之后把式子化成$\sum P_i=\sum S_i*mi ...
随机推荐
- 20155216 Exp8 WEB基础实践
Exp8 WEB基础实践 实践内容 Apache环境配置 apache是kali下的web服务器,通过访问 ip地址+端口号+文件名称 打开对应的网页. 输入命令 vi /etc/apache2/po ...
- Python基础(条件判断和循环) if elif else for while break continue;
条件判断 计算机之所以能做很多自动化的任务,因为它可以自己做条件判断. 比如,输入用户年龄,根据年龄打印不同的内容,在Python程序中,用if语句实现: age = 20 if age >= ...
- Data Consistency Primer
云应用通常来说,使用的数据很多都是分散的,来自不同的数据仓库.在这种环境下,管理和保持数据一致性是很复杂的,无论是在并发跟可用性上都可能出问题.开发者有的时候就需要为了强一致性而牺牲可用性了.这也就意 ...
- mfc Picture Control 控件属性
知识点: Picture Control 控件属性 CStatic类 图片控件 图片控件使用 一.图片控件属性 Picture Control 属性: Type:Frame //框架 Type:Etc ...
- CS50.3
1,int()取整函数 2,RPG(role playing game )角色扮演游戏 3,代码写了,要跑,需要compiler (编译器) 4,CLI(command-line interface) ...
- sql优化详细介绍学习笔记
因为最近在面试,发现sql优化这个方面问的特别特别的多.之前都是零零星星,不够全面的了解一点,刚刚在网上查了一下,从 http://blog.csdn.net/zhushuai1221/article ...
- C#图片处理(转zhjzwl/archive)
基本原理: 获取每一个像素值,然后处理这些每一个像素值. 原始图片: ISINBAEVA ~~~~~~~~ 一. 底片效果 原理: GetPixel方法获得每一点像素的值, 然后再使用SetPix ...
- 在Windows上安装配置Git
用安装 https://git-scm.com/ 官网下载安装包 (官网有安装步骤 https://git-scm.com/book/zh/v1/%E8%B5%B7%E6%AD%A5-%E5%AE%8 ...
- 基于spring框架的apache shiro简单集成
关于项目的安全保护,我一直想找一个简单配置就能达到目的的方法,自从接触了shiro,这个目标总算达成了,以下结合我使用shiro的经验,谈谈比较轻便地集成该功能. 首先我们先了解一下shiro是什么. ...
- 《linux内核分析》作业一:分析汇编代码
通过汇编一个简单的C程序,分析汇编代码理解计算机是如何工作的(王海宁) 姓名:王海宁 学号:20135103 课程:<Linux内核分析& ...