题目链接

题目是求最长反链,反链指点集内任意两点不能互相到达。

根据Dilworth定理,在DAG中,$$最长反链 = 最小路径覆盖 = V - 最大匹配数$$

用Floyd求一遍传递闭包后,在所有可互相到达的点间连边。求二分图最大匹配。

也可以这么理解: 每一条边表示这两个点不能同时被选中,选出最少的一定不选的点(最小割?),用总点数减去就是答案了。

//1228kb	80ms
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
const int N=203,M=25000; int n,m,src,des,Enum,cur[N],H[N],nxt[M],fr[M],to[M],cap[M],lev[N],num[N],que[N],pre[N];
bool mp[103][103]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AddEdge(int u,int v,int w)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum, fr[Enum]=u, cap[Enum]=w;
to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum, fr[Enum]=v, cap[Enum]=0;
}
void Floyd()
{
for(int k=1; k<=n; ++k)
for(int i=1; i<=n; ++i)
for(int j=1; j<=n; ++j)
mp[i][j]|=(mp[i][k]&&mp[k][j]);
}
bool BFS()
{
for(int i=src; i<des; ++i) lev[i]=des+1;
lev[des]=0, que[0]=des; int h=0,t=1;
while(h<t)
{
int x=que[h++];
for(int i=H[x]; i; i=nxt[i])
if(lev[to[i]]==des+1 && cap[i^1])
lev[to[i]]=lev[x]+1, que[t++]=to[i];
}
return lev[src]<=des;
}
void Augment(){
for(int i=des; i!=src; i=fr[pre[i]])
--cap[pre[i]], ++cap[pre[i]^1];
}
int ISAP()
{
if(!BFS()) return 0;
for(int i=src; i<=des; ++i) ++num[lev[i]],cur[i]=H[i];
int x=src,res=0;
while(lev[src]<=des)
{
if(x==des) x=src,++res,Augment();
bool can=0;
for(int i=cur[x]; i; i=nxt[i])
if(lev[to[i]]==lev[x]-1 && cap[i])
{
can=1, cur[x]=i, pre[x=to[i]]=i;
break;
}
if(!can)
{
int mn=des;
for(int i=H[x]; i; i=nxt[i])
if(cap[i]) mn=std::min(mn,lev[to[i]]);
if(!--num[lev[x]]) break;
++num[lev[x]=mn+1], cur[x]=H[x];
if(x!=src) x=fr[pre[x]];
}
}
return res;
} int main()
{
n=read(),m=read(),Enum=1,src=0,des=n<<1|1;
for(int u,v,i=1; i<=m; ++i) u=read(),v=read(),mp[u][v]=1;
Floyd();
for(int i=1; i<=n; ++i)
for(int j=1; j<=n; ++j)
if(mp[i][j]) AddEdge(i,j+n,1);
for(int i=1; i<=n; ++i) AddEdge(src,i,1),AddEdge(i+n,des,1);
printf("%d",n-ISAP()); return 0;
}

BZOJ.1143.[CTSC2008]祭祀(Dilworth定理 最大流ISAP)的更多相关文章

  1. bzoj 1143: [CTSC2008]祭祀river / 2718: [Violet 4]毕业旅行 -- 二分图匹配

    1143: [CTSC2008]祭祀river Time Limit: 10 Sec  Memory Limit: 162 MB Description 在遥远的东方,有一个神秘的民族,自称Y族.他们 ...

  2. BZOJ 1143: [CTSC2008]祭祀river 最长反链

    1143: [CTSC2008]祭祀river Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline ...

  3. Bzoj 2718: [Violet 4]毕业旅行 && Bzoj 1143: [CTSC2008]祭祀river 传递闭包,二分图匹配,匈牙利,bitset

    1143: [CTSC2008]祭祀river Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1878  Solved: 937[Submit][St ...

  4. [BZOJ 1143] [CTSC2008] 祭祀river 【最长反链】

    题目链接:BZOJ - 1143 题目分析 这道题在BZOJ上只要求输出可选的最多的祭祀地点个数,是一道求最长反链长度的裸题. 下面给出一些相关知识: 在有向无环图中,有如下的一些定义和性质: 链:一 ...

  5. 洛谷 P4298: bzoj 1143: [CTSC2008]祭祀

    题目传送门:洛谷 P4298. 题意简述: 给定一个 \(n\) 个点,\(m\) 条边的简单有向无环图(DAG),求出它的最长反链,并构造方案. 最长反链:一张有向无环图的最长反链为一个集合 \(S ...

  6. BZOJ 1143 [CTSC2008]祭祀river(二分图匹配)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1143 [题目大意] 给出一张有向图,问最大不连通点集,连通具有传递性 [题解] 我们将 ...

  7. 【刷题】BZOJ 1143 [CTSC2008]祭祀river

    Description 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成 ...

  8. BZOJ 1143: [CTSC2008]祭祀river 最大独立集

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=1143 题解: 给你一个DAG,求最大的顶点集,使得任意两个顶点之间不可达. 把每个顶点v ...

  9. BZOJ 1143: [CTSC2008]祭祀river(最大独立集)

    题面: https://www.lydsy.com/JudgeOnline/problem.php?id=1143 一句话题意:给一个DAG(有向无环图),求选出尽量多的点使这些点两两不可达,输出点个 ...

随机推荐

  1. python---django中form组件(2)自定制属性以及表单的各种验证,以及数据源的实时更新,以及和数据库关联使用ModelForm和元类

    自定义属性以及各种验证 分析widget: class TestForm(forms.Form): user = fields.CharField( required = True, widget = ...

  2. BAT及各大互联网公司2014前端笔试面试题--JavaScript篇(昨天某个群友表示写的简单了点,然后我无情的把他的抄了一遍)

    (某个群友)http://www.cnblogs.com/coco1s/ 很多面试题是我自己面试BAT亲身经历碰到的.整理分享出来希望更多的前端er共同进步吧,不仅适用于求职者,对于巩固复习js更是大 ...

  3. 用phpStorm的数据库工具来管理你的数据库

    phpStorm是一个功能强大的IDE,不仅对PHP提供了支持,而且对前端HTML.CSS.JavaScript的支持也是非常不错的.此外,phpStorm还集成了很多实用的功能,下面就phpStor ...

  4. mac 无法验证副本

    转: 这个是拆机后断了电源,导致时间不对,也就是说现在电脑的时间比U盘制作的时间还早,所以有这样的错误提示. 在终端里面修改时间请参考下面的代码,按回车键确认:date 062614102014.30 ...

  5. Miller_Rabin 素数测试

    费马定理的逆定理几乎可以用来判断一个数是否为素数,但是有一些数是判断不出来的,因此,Miller_Rabin测试方法对费马的测试过程做了改进,克服其存在的问题. 推理过程如下(摘自维基百科): 摘自另 ...

  6. 第8月第16天 django pil

    1. https://github.com/chaonet/forum/ sudo  easy_install --find-links http://www.pythonware.com/produ ...

  7. Java NIO 之 Buffer(缓冲区)

    一 Buffer(缓冲区)介绍 Java NIO Buffers用于和NIO Channel交互. 我们从Channel中读取数据到buffers里,从Buffer把数据写入到Channels. Bu ...

  8. 【Hadoop】搭建完全分布式的hadoop【转】

    转自:http://www.cnblogs.com/laov/p/3421479.html 下面博文已更新,请移步 ↑ 用于测试,我用4台虚拟机搭建成了hadoop结构 我用了两个台式机.一个xp系统 ...

  9. Jenkins 安装及使用

    jenkins是基于Java开发的一种持续集成工具,用于监控持续重复的工作. 可以用它做网站代码提交,更新. 1,安装 首先确保目标机器上装有 java jdk 版本最好在 1.6 以上,小编使用的是 ...

  10. Java中包的介绍

    包的介绍: 未命名包 命名包 可以避免类名重复 为了更好地组织类,Java 提供了包机制,用于区别类名的命名空间. 包的作用 1.把功能相似或相关的类或接口组织在同一个包中,方便类的查找和使用. 2. ...