「WC 2019」数树
「WC 2019」数树
一道涨姿势的EGF好题,官方题解我并没有完全看懂,尝试用指数型生成函数和组合意义的角度推了一波。考场上只得了 44 分也暴露了我在数数的一些基本套路上的不足,后面的 \(\exp\) 是真的神仙,做不出来当然很正常,而且我当时也不怎么会多项式。
Task0
考虑公共边组成 \(k\) 个联通块,答案就是 \(y^k\) ,并查集维护一下即可,复杂度 \(\mathcal O(n\log n)\) 。
code
namespace task0{
map<pair<int, int>, int> mp;
int fa[N];
inline int ask(int x){ return x == fa[x] ? x : fa[x] = ask(fa[x]); }
inline void solve(){
for(int i = 1; i <= n; i++) fa[i] = i;
for(int i = 1, x, y; i <= 2 * (n - 1); i++)
read(x), read(y), mp[make_pair(min(x, y), max(x, y))]++;;
for(map<pair<int, int>, int>::iterator it = mp.begin(); it != mp.end(); it++) if(it->second == 2)
if(ask(it->first.first) != ask(it->first.second)) fa[ask(it->first.first)] = ask(it->first.second);
int tot = 0;
for(int i = 1; i <= n; i++) if(fa[i] == i) tot++;
cout << Pow(Y, tot) << endl;
}
}
Task1
考虑两棵树每有一条公共边,联通块个数就 \(-1\) ,不妨设一开始答案为 \(y^n\) ,每有一条公共边,其对答案的贡献就是 \(z=y^{-1}\) 。
先按照官方题解说的,引入组合恒等式
\]
考虑红树和蓝树的最终形态如果恰好有 \(k\) 条公共边,那么对答案的贡献就是 \(z^k\) ,考虑枚举这种形态的所有公共边的每一个子集,每一个大小为 \(i\) 的子集贡献为 \((z-1)^i\) ,就可以得到这个式子的组合意义。
不妨枚举一个大小为 \(i\) 的公共边集 \(S\) ,(一定是蓝树的一个边集),然后考虑所有公共边集是 \(S\) 的超集的方案,其对答案的贡献就是 \((z-1)^i\) 乘上覆盖它的红树的数量。
假设当前有 \(i\) 条公共边,形成了 \(m=n-i\) 个联通块,其中第 \(i\) 个联通块大小为 \(a_i\) ,根据 \(prufer\) 经典结论 ,可以得到覆盖这个它的红树的数量。
\]
那么所有情况对答案的贡献和就是
\]
考虑后面式子的组合意义是在每个联通块中恰好选出一个点的方案数,所以可以令 \(dp[u][0/1]\) 表示蓝树以 \(u\) 为根的联通块是否选出一个点的总贡献,此时每个联通块有 \(n\) 的贡献,每选一条公共边有 \(z\) 的贡献,讨论 \(u\) 的每个儿子是否和 \(u\) 在一个联通块即可,复杂度 \(O(n)\) 。
code
namespace task1{
int dp[N][2], Z;
vector<int> g[N];
inline void dfs(int u, int fa){
dp[u][0] = 1, dp[u][1] = n;
for(int i = 0; i < (int) g[u].size(); i++){
int v = g[u][i];
if(v == fa) continue;
dfs(v, u);
dp[u][1] = (1ll * dp[v][1] * dp[u][1] % P + 1ll * (Z - 1) * (1ll * dp[v][1] * dp[u][0] % P + 1ll * dp[v][0] * dp[u][1] % P) % P) % P;
dp[u][0] = (1ll * dp[v][1] * dp[u][0] % P + 1ll * dp[v][0] * dp[u][0] % P * (Z - 1) % P) % P;
}
}
inline void solve(){
Z = Pow(Y);
for(int i = 1, x, y; i < n; i++){
read(x), read(y);
g[x].push_back(y), g[y].push_back(x);
}
dfs(1, 0);
cout << 1ll * dp[1][1] * Pow(Y, n) % P * Pow(n, P - 3) % P << endl;
}
}
Task 2
还是利用之前的组合恒等式,枚举一个公共边集 \(S\) ,算出其对答案的贡献。
这一步等价于将 \(n\) 拆分成至多 \(m=n-|S|\) 个联通块,每个联通块内部已经固定,计算所有拆分方式对答案的贡献:
\\
=(z-1)^nn^{-4}\sum_{m=1}^n\sum_{\sum_{i=1}^ma_i=n,a_i\geq1}\dfrac{n!}{m!\prod a_i!}\prod(z-1)^{-1}n^2a_i^{a_i} \\
\]
也就是说每一个大小为 \(a_i\) 的联通块对答案的贡献为 \((z-1)^{-1}n^2a_i^{a_i}\) ,对这些联通块做有标号的集合拼接再乘上之前的系数可以得到答案,前面的 \(\dfrac{n!}{m!\prod a_i!}\) 的组合意义是对于当前枚举的拼接方式,去除集合内部顺序以及拼接顺序的影响后的方案数。
其实到这一步 EGF 的形式就已经很显然了,考虑列出每个联通块的指数型生成函数。
\]
把这个生成函数 \(\exp\) 一下就自然做完了有标号的集合拼接,前面集合拼接的方案数的系数也不用考虑了。由于 \(\exp\) 后的第 \(n\) 项还有一个 \(\dfrac{x^n}{n!}\) 的形式幂级数要去掉,所以最终式子就变成:
\]
做一遍多项式 \(\exp\) ,注意 \(z = 1\) 也就是 \(y=1\)的时候 \((z-1)^{-1}\) 不存在,需要特判,总复杂度 \(\mathcal O(n \log n)\) 。
code
namespace task2{
int js[N], inv[N], ans[N], f[N];
inline void solve(){
if(Y == 1) return (void) (cout << 1ll * Pow(n, n - 2) * Pow(n, n - 2) % P << endl);
poly::init();
js[0] = inv[0] = 1;
for(int i = 1; i <= n; i++)
js[i] = 1ll * js[i-1] * i % P, inv[i] = Pow(js[i], P - 2);
int Z = Pow(Y, P - 2), c = 1ll * Pow(Z - 1, n) * Pow(n, P - 5) % P * js[n] % P;
int c2 = 1ll * n * n % P * Pow(Z - 1, P - 2) % P;
for(int i = 1; i <= n; i++) f[i] = 1ll * c2 * Pow(i, i) % P * inv[i] % P;
poly::getexp(f, ans, n + 1);
cout << 1ll * ans[n] * c % P * Pow(Y, n) % P;
}
}
「WC 2019」数树的更多相关文章
- 【题解】#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT)
[题解]#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT) 之前做这道题不理解,有一点走火入魔了,甚至想要一本近世代数来看,然后通过人类智慧思考后发现, ...
- 「CSP-S 2019」括号树
[题目描述] 传送门 [题解] 是时候讨论一下我在考场上是怎么将这道题写挂的了 初看这道题毫无思路,先看看部分分吧 一条链的情况?设k[i]表示前i个括号的方案数 显然\(k[i]=k[i-1]+\) ...
- 【LOJ】#2983. 「WC2019」数树
LOJ2983. 「WC2019」数树 task0 有\(i\)条边一样答案就是\(y^{n - i}\) task1 这里有个避免容斥的方法,如果有\(i\)条边重复我们要算的是\(y^{n - i ...
- #3146. 「APIO 2019」路灯
#3146. 「APIO 2019」路灯 题目描述 一辆自动驾驶的出租车正在 Innopolis 的街道上行驶.该街道上有 \(n + 1\) 个停车站点,它们将街道划分成了 \(n\) 条路段.每一 ...
- LOJ#3054. 「HNOI 2019」鱼
LOJ#3054. 「HNOI 2019」鱼 https://loj.ac/problem/3054 题意 平面上有n个点,问能组成几个六个点的鱼.(n<=1000) 分析 鱼题,劲啊. 容易想 ...
- #3144. 「APIO 2019」奇怪装置
#3144. 「APIO 2019」奇怪装置 题目描述 考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数 \(x\) 和 \(y\). 经过研究,科学家对该装置得出了一个 ...
- [Luogu 3701] 「伪模板」主席树
[Luogu 3701] 「伪模板」主席树 这是一道网络流,不是主席树,不是什么数据结构,而是网络流. 题目背景及描述都非常的暴力,以至于 Capella 在做此题的过程中不禁感到生命流逝. S 向 ...
- #3145. 「APIO 2019」桥梁
#3145. 「APIO 2019」桥梁 题目描述 圣彼得堡市内所有水路长度总和约 282 千米,市内水域面积占城市面积的 7%.--来自维基百科 圣彼得堡位于由 \(m\) 座桥梁连接而成的 \(n ...
- Diary / Solution Set -「WC 2022」线上冬眠做噩梦
大概只有比较有意思又不过分超出能力范围的题叭. 可是兔子的"能力范围" \(=\varnothing\) qwq. 「CF 1267G」Game Relics 任意一个 ...
随机推荐
- linux服务器安装mysql并配置外网访问
linux服务器安装mysql并配置外网访问 更新系统,如果不运行该命令,直接安装mysql,会出现"有几个软件包无法下载 sudo apt-get update 安装mysql sudo ...
- spring Mvc 执行原理 及 xml注解配置说明 (六)
Spring MVC 执行原理 在 Spring Mvc 访问过程里,每个请求都首先经过 许多的过滤器,经 DispatcherServlet 处理; 一个Spring MVC工程里,可以配置多个的 ...
- 【GDOI2018】所有题目和解题报告
使用说明:题意和数据范围都只是回忆内容,仅供参考.题解陆续补上. Day 1 第一题 题意:给定n个数字,要求划分成k的连续段使得每个连续段内的数字之和相同,求最大的k.n,Σai<=10^6. ...
- c++刷题(43/100)矩阵旋转打印
题目1:矩阵旋转打印 输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字,例如,如果输入如下4 X 4矩阵: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 则 ...
- 解除IIS配置节锁定
C:\windows\system32\inetsrv\appcmd unlock config -section:system.webServer/modules
- css实现导航切换
css实现导航切换 效果图: 代码如下,复制即可使用: <!DOCTYPE html> <html> <head> <title>css实现导航切换&l ...
- Ocelot + IdentityServer4 构建 GateWay
上一篇已经构建好了例子,接下来将IdentityServer4添加到Ocelot中去实现 配置一个客户端配置,可以构建一个简单的客户端信息,这里我用的混合模式,配置比较多,对于客户端模式而言实际很多都 ...
- Java中的String问题
方式一:String a = “aaa” ; 方式二:String b = new String(“aaa”); 两种方式都能创建字符串对象,但方式一要比方式二更优.因为字符串是保存在常量池中的,而通 ...
- linux修改文件读写执行权限命令chmod
之前用chmod的时候都是简单的类似下面这样使用: $ file 也有时候可能会修改一个目录下所有子目录和文件: $ directory -R 也知道3个数字(例子中的755)分别代表赋予 “文件属主 ...
- 038 spark中使用sparksql对日志进行分析(属于小案例)
一:使用sparksql开发 1.sparksql开发的两种方式 HQL:SQL语句开发 eq : sqlContext.sql("xxxx") DSL : sparkSql中Da ...