Description

An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.

Input

Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.

Output

For each problem instance, output consists of one line. This line should be one of the following three:

Sorted sequence determined after xxx relations: yyy...y. 
Sorted sequence cannot be determined. 
Inconsistency found after xxx relations.

where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence. 

Sample Input

4 6
A<B
A<C
B<C
C<D
B<D
A<B
3 2
A<B
B<A
26 1
A<Z
0 0

Sample Output

Sorted sequence determined after 4 relations: ABCD.
Inconsistency found after 2 relations.
Sorted sequence cannot be determined.
    题目大意:给你两个数n和m , n 表示26个大写英文子母中的前 n 个字母, m 表示以下m个形如:A < B 的表达式。按照这 m 个表达式给出的顺序,每给出一个表达式(假设序号为k ,1 <= k <= m),就以这前k个表达式为条件,判断以下三种情况:
1、前n个大写英文字母 能 按拓扑序排好 ,并且 只有一种 排列方式。注意:此时k 可能小于 n !!这时输出:Sorted sequence determined after xxx relations: yyy...y. 
2、前n个大写英文字母 能 按拓扑序排好 ,但有 不止一种 排列方式。注意:此时k 必须等于 n !!这时输出:Sorted sequence cannot be determined. 
3、如果不能完成拓扑序,注意:此时k 可能小于 n !!就输出:Sorted sequence cannot be determined.
    解题思路:每给出一个表达式,就以这个表达式以及这个表达式以前的表达式为条件,进行拓扑排序。
    请看代码:
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<vector>
#define mem(a , b) memset(a , b , sizeof(a))
using namespace std ;
const int MAXN = 100 ;
int ind[MAXN] ;
int idtmp[MAXN] ;
char ans[MAXN] ;
vector<int> G[MAXN] ;
int n , m ;
void chu()
{
mem(ind , 0) ;
mem(idtmp , 0) ;
mem(ans , 0) ;
int i ;
for(i = 0 ; i <= n ; i ++)
G[i].clear() ;
}
int topo()
{
int i ;
mem(idtmp , 0) ;
for(i = 0 ; i < n ; i ++)
{
idtmp[i] = ind[i] ;
}
int k = 0 ;
int sumd0 ;
int u , v ;
bool flag1 , flag2 , flag3 ;
flag2 = false ;
flag3 = true ;
for(k = 0 ; k < n ; k ++)
{
sumd0 = 0 ;
for(i = 0 ; i < n ; i ++)
{
if(idtmp[i] == 0)
{
sumd0 ++ ;
u = i ;
}
}
if(sumd0 > 0)
{
ans[k] = u + 'A';
idtmp[u] -- ;
for(int j = 0 ; j < G[u].size() ; j ++)
{
v = G[u][j] ;
idtmp[v] -- ;
}
if(sumd0 > 1)
{
flag2 = true ;
}
}
else
{
flag3 = false ;
break ;
}
}
if(!flag3)
{
return 3 ;
}
else
{
if(flag2)
{
return 2 ;
}
else
{
return 1 ;
}
}
}
void init()
{
chu() ;
int i ;
char a , op , b ;
bool f = false ;
for(i = 0 ; i < m ; i ++)
{
cin >> a >> op >> b ;
if(f)
continue ;
int ta , tb ;
ta = a - 'A' ;
tb = b - 'A' ;
G[ta].push_back(tb) ;
ind[tb] ++ ;
int pan ;
pan = topo() ;
if(pan == 3)
{
f = true ;
printf("Inconsistency found after %d relations.\n" , i + 1) ;
}
else if(pan == 1)
{
ans[n] = '\0' ;
f = true ;
printf("Sorted sequence determined after %d relations: %s.\n" , i + 1 , ans) ;
}
else if(pan == 2 && i == m - 1)
{
puts("Sorted sequence cannot be determined.") ;
}
}
}
int main()
{
while (scanf("%d%d" , &n , &m) != EOF)
{
if(n == 0 && m == 0)
break ;
init() ;
}
return 0 ;
}
												

POJ 1094 Sorting It All Out (拓扑排序) - from lanshui_Yang的更多相关文章

  1. ACM: poj 1094 Sorting It All Out - 拓扑排序

    poj 1094 Sorting It All Out Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & ...

  2. poj 1094 Sorting It All Out (拓扑排序)

    http://poj.org/problem?id=1094 Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  3. [ACM_模拟] POJ 1094 Sorting It All Out (拓扑排序+Floyd算法 判断关系是否矛盾或统一)

    Description An ascending sorted sequence of distinct values is one in which some form of a less-than ...

  4. poj 1094 Sorting It All Out_拓扑排序

    题意:是否唯一确定顺序,根据情况输出 #include <iostream> #include<cstdio> #include<cstring> #include ...

  5. POJ 1094 Sorting It All Out 拓扑排序 难度:0

    http://poj.org/problem?id=1094 #include <cstdio> #include <cstring> #include <vector& ...

  6. PKU 1094 Sorting It All Out(拓扑排序)

    题目大意:就是给定一组字母的大小关系判断他们是否能组成唯一的拓扑序列. 是典型的拓扑排序,但输出格式上确有三种形式: 1.该字母序列有序,并依次输出: 2.判断该序列是否唯一: 3.该序列字母次序之间 ...

  7. POJ 1094 Sorting It All Out(拓扑排序+判环+拓扑路径唯一性确定)

    Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 39602   Accepted: 13 ...

  8. [ACM] POJ 1094 Sorting It All Out (拓扑排序)

    Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26801   Accepted: 92 ...

  9. POJ 1094:Sorting It All Out拓扑排序之我在这里挖了一个大大的坑

    Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 29984   Accepted: 10 ...

随机推荐

  1. 自定义JSP标签实现语言国际化(类似struts text标签),并同时支持图片、JS文件国际化

    源代码及样例下载地址: http://download.csdn.net/detail/u014569459/7169385 一.功能说明: 1. 支持语言国际化 2. 支持图片文件.JS文件国际化 ...

  2. 【POJ2196】Specialized Four-Digit Numbers(暴力打表)

    一道水题,只要会复制粘贴就好! #include <iostream> #include <cstring> #include <cstdlib> #include ...

  3. Android学习笔记—Windows下NDK开发简单示例

    该示例假设Android开发环境已经搭建完成,NDK也配置成功: 1.在Eclipse上新建Android工程,名称为ndkdemo.修改res\layout\activity_main.xml &l ...

  4. sql 参数

    sqlserver :传参数是“@” oracle:是“:” mysql:是“?”

  5. Android 定义重名权限问题

    一直以来对android的权限机制就有一个疑问,因为在使用权限时,实际上只需要permission的name这一个标签,而在定义权限时,android是不会检查是否重名的,那么在两个应用定义了重名权限 ...

  6. Linq 标准查询操作符三

    本文介绍了LINQ标准查询操作符.没有这些操作符,LINQ就不会存在.本文为理解这些操作符的功能提供了很好的基础.了解它们将会很有帮助,因为LINQ的各种Provider都是基于这些操作符来完成各自丰 ...

  7. struts2中的action访问web对象

    Struts2的Action就是一个普通的POJO对象,它和Web对象request.response.session和application没有耦合在一起,这样便于单独测试Action,那么我们在A ...

  8. 图的割点 桥 双连通(byvoid)

    [点连通度与边连通度] 在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合.一个图的点连通度的定义为,最小割点集 ...

  9. java zip工具类

    依赖jar :apache-ant-1.9.2-bin.zip import java.io.File; import java.io.FileInputStream; import java.io. ...

  10. Oracle 数据文件 reuse 属性 说明(转载)

    Oracle 表空间 创建参数 说明 http://blog.csdn.net/tianlesoftware/archive/2011/01/27/6166928.aspx 当我们对表空间添加数据文件 ...