nefu 462 fib组合
题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemshow.php?problem_id=462
斐波那契数列的通项公式
推倒过程:
对于本题分析:
最后一行的一个变形为(6-2√5)^2/4
代码
- #include <iostream>
- using namespace std;
- int main(){
- int n;
- while(cin>>n){
- if(n%3)
- cout<<"no"<<endl;
- else
- cout<<"yes"<<endl;
- }
- return 0;
- }
nefu 462 fib组合的更多相关文章
- NEFU 118 - n!后面有多少个0 & NEFU 119 - 组合素数 - [n!的素因子分解]
首先给出一个性质: n!的素因子分解中的素数p的幂为:[ n / p ] + [ n / p² ] + [ n / p³ ] + …… 举例证明: 例如我们有10!,我们要求它的素因子分解中2的幂: ...
- 大到可以小说的Y组合子(二)
问:上一回,你在最后曾提到"抽象性不足",这话怎么说? 答:试想,如果现在需要实现一个其它的递归(比如:Fibonacci),就必须把之前的模式从头套一遍,然后通过fib_make ...
- Racket中使用Y组合子
关于Y组合子,网上已经介绍很多了,其作用主要是解决匿名lambda的递归调用自己. 首先我们来看直观的递归lambda定义, 假设要定义阶乘的lambda表达,C#中需要这么定义 Func<in ...
- CF#462 div1 D:A Creative Cutout
CF#462 div1 D:A Creative Cutout 题目大意: 原网址戳我! 题目大意: 在网格上任选一个点作为圆中心,然后以其为圆心画\(m\)个圆. 其中第\(k\)个圆的半径为\(\ ...
- 动态规划之Fib数列类问题应用
一,问题描述 有个小孩上楼梯,共有N阶楼梯,小孩一次可以上1阶,2阶或者3阶.走到N阶楼梯,一共有多少种走法? 二,问题分析 DP之自顶向下分析方式: 爬到第N阶楼梯,一共只有三种情况(全划分,加法原 ...
- Fib(兔子问题)python实现多种方法
# 斐波那契数列是学计算机入门最经典的一道题目 # 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci) # ...
- 复杂的 Hash 函数组合有意义吗?
很久以前看到一篇文章,讲某个大网站储存用户口令时,会经过十分复杂的处理.怎么个复杂记不得了,大概就是先 Hash,结果加上一些特殊字符再 Hash,结果再加上些字符.再倒序.再怎么怎么的.再 Hash ...
- JS继承之借用构造函数继承和组合继承
根据少一点套路,多一点真诚这个原则,继续学习. 借用构造函数继承 在解决原型中包含引用类型值所带来问题的过程中,开发人员开始使用一种叫做借用构造函数(constructor stealing)的技术( ...
- ComponentPattern (组合模式)
import java.util.LinkedList; /** * 组合模式 * * @author TMAC-J 主要用于树状结构,用于部分和整体区别无区别的场景 想象一下,假设有一批连锁的理发店 ...
随机推荐
- Android存储小结
转自:http://www.liaohuqiu.net/cn/posts/storage-in-android/ android系统自身自带有存储,另外也可以通过sd卡来扩充存储空间.前者好比pc中的 ...
- js 获取月份 格式yy-mm-dd
/** * 获取上一个月 * * @date 格式为yyyy-mm-dd的日期,如:2014-01-25 */ function getPreMonth(date) { var arr = date. ...
- 向mysql添加新用户并分配权限
首先要声明一点,大部分情况下,修改MySQL是需要有mysql里的root权限的,所以一般用户无法更改密码,除非请求管理员. 方法一使用phpmyadmin,这是最简单的了,修改mysql库的user ...
- ListView的简单使用和性能优化
起源:ListView是Android开发中使用最广泛的一种控件,它以垂直列表的形式显示所有列表项. 创建ListView有两种方式: ☆ 直接使用ListView进行创建. ☆让Activity继承 ...
- 黑马程序员-- C语言交换两个整数变量值几种函数比较
总结了C语言中几种交换两个整数数值的函数,欢迎交流 #include <stdio.h> 使用多种交换变量值的函数比较 方法一:使用第三方临时变量 这种函数a,b只是值传递,实质上不能修交 ...
- 理解TCP为什么需要进行三次握手
在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接. 第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认: ...
- Linux下diff使用简介
diff用来比较两个文件的差异.首先构建两个相似的文件. Hello文件 world文件 使用diff -u hello world > diff.txt,将两个文件的比对结果输入到diff. ...
- cygwin在Windows8.1中设置ssh的问题解决
为了在Windows 8.1上直接使用Linux环境和hadoop开发,装了cygwin,同时设置ssh无密码登录. 但正常ssh-keygen后复制到authorised_keys后登录出现提示 ...
- 【OpenCV新手教程之十二】OpenCV边缘检測:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨) ...
- Android的应用程序的异常处理2
1.自定义一个类(MaApp)继承Application 2.在清单文件中的Application选项菜单对应的name属性中添加MyApp 3.重写application中的onCreate方法 4 ...