pid=2276">题目链接

题意:有n盏灯。编号从1到n。他们绕成一圈,也就是说。1号灯的左边是n号灯。假设在第t秒的时候,某盏灯左边的灯是亮着的,那么就在第t+1秒的时候改变这盏灯的状态。输入m和初始灯的状态。输出m秒后,全部灯的状态。

思路:事实上每盏灯的状态之和前一盏和自己有关。所以能够得到一个关系矩阵。如果有6盏灯,因此能够得到关系矩阵例如以下: 

(1, 0, 0, 0, 0, 1) 

(1, 1, 0, 0, 0, 0) 

(0, 1, 1, 0, 0, 0) 

(0, 0, 1, 1, 0, 0) 

(0, 0, 0, 1, 1, 0) 

(0, 0, 0, 0, 1, 1) 

这种话就能够以此类推。得到n盏灯时的关系矩阵。然后使用矩阵高速幂进行运算。

PS:在这里,自己刚開始高速幂是用递归的。可是暴栈了。

。。后来改成非递归才过的。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm> using namespace std; const int MAXN = 105; struct mat{
int s[MAXN][MAXN];
int l;
mat(int len) {
memset(s, 0, sizeof(s));
l = len;
}
mat operator * (const mat& c) {
mat ans(l);
memset(ans.s, 0, sizeof(ans.s));
for (int i = 0; i < l; i++)
for (int j = 0; j < l; j++) {
for (int k = 0; k < l; k++)
ans.s[i][j] = (ans.s[i][j] + s[i][k] * c.s[k][j]);
ans.s[i][j] = ans.s[i][j] % 2;
}
return ans;
}
}; char str[MAXN];
int t; mat pow_mod(mat c, int k) {
/*if (k == 1)
return c;
mat a = pow_mod(c, k / 2);
mat ans = a * a;
if (k % 2)
ans = ans * c;
return ans;*/
mat ans = c;
k--;
while (k) {
if (k & 1)
ans = ans * c;
k >>= 1;
c = c * c;
}
return ans;
} int main() {
while (scanf("%d", &t) != EOF) {
scanf("%s", str);
int l = strlen(str);
mat c(l);
for (int i = 0; i < l; i++)
for (int j = 0; j < l; j++) {
if (i == 0)
c.s[i][0] = c.s[i][l - 1] = 1;
else
c.s[i][i - 1] = c.s[i][i] = 1;
}
mat tmp(l);
for (int i = 0; i < l; i++)
tmp.s[i][0] = str[i] - '0';
mat ans = pow_mod(c, t);
ans = ans * tmp;
for (int i = 0; i < l; i++)
printf("%d", ans.s[i][0]);
printf("\n");
}
return 0;
}

HDU2276 - Kiki &amp; Little Kiki 2(矩阵高速幂)的更多相关文章

  1. UVA 11551 - Experienced Endeavour(矩阵高速幂)

    UVA 11551 - Experienced Endeavour 题目链接 题意:给定一列数,每一个数相应一个变换.变换为原先数列一些位置相加起来的和,问r次变换后的序列是多少 思路:矩阵高速幂,要 ...

  2. UVA10518 - How Many Calls?(矩阵高速幂)

    UVA10518 - How Many Calls?(矩阵高速幂) 题目链接 题目大意:给你fibonacci数列怎么求的.然后问你求f(n) = f(n - 1) + f(n - 2)须要多少次调用 ...

  3. HDU2842-Chinese Rings(递推+矩阵高速幂)

    pid=2842">题目链接 题意:求出最少步骤解出九连环. 取出第k个的条件是,k-2个已被取出,k-1个仍在支架上. 思路:想必九连环都玩过吧,事实上最少步骤就是从最后一个环開始. ...

  4. uva 10655 - Contemplation! Algebra(矩阵高速幂)

    题目连接:uva 10655 - Contemplation! Algebra 题目大意:输入非负整数,p.q,n,求an+bn的值,当中a和b满足a+b=p,ab=q,注意a和b不一定是实数. 解题 ...

  5. hdu 3221 Brute-force Algorithm(高速幂取模,矩阵高速幂求fib)

    http://acm.hdu.edu.cn/showproblem.php?pid=3221 一晚上搞出来这么一道题..Mark. 给出这么一个程序.问funny函数调用了多少次. 我们定义数组为所求 ...

  6. HDU5015 233 Matrix(矩阵高速幂)

    HDU5015 233 Matrix(矩阵高速幂) 题目链接 题目大意: 给出n∗m矩阵,给出第一行a01, a02, a03 ...a0m (各自是233, 2333, 23333...), 再给定 ...

  7. [POJ 3150] Cellular Automaton (矩阵高速幂 + 矩阵乘法优化)

    Cellular Automaton Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 3048   Accepted: 12 ...

  8. HDU 1575 Tr A(矩阵高速幂)

    题目地址:HDU 1575 矩阵高速幂裸题. 初学矩阵高速幂.曾经学过高速幂.今天一看矩阵高速幂,原来其原理是一样的,这就好办多了.都是利用二分的思想不断的乘.仅仅只是把数字变成了矩阵而已. 代码例如 ...

  9. HDOJ 4686 Arc of Dream 矩阵高速幂

    矩阵高速幂: 依据关系够建矩阵 , 高速幂解决. Arc of Dream Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/ ...

随机推荐

  1. ios sdk的制作

    制作sdk的主要目的是将自己的code通过接口提供给其他应用使用.接下来介绍.a 静态库的制作注意事项: 1.首先.a文件的静态库要进行随时的测试,因此需要将其放入应用中(创建一个应用,再创建一个.a ...

  2. WPF datagrid 如何隔行变色

    <DataGrid AlternationCount="2"> <DataGrid.RowStyle> <Style TargetType=" ...

  3. mysql安装详细步骤图解

    本文转自http://blog.csdn.net/fanyunlei/article/details/21454645 别看图多,其实mysql的安装十分简单,一路next即可,只是注意倒数第三步,设 ...

  4. Spring 中拦截器与过滤器的区别

    spring 中拦截器 与servlet 的filter 有相似之处.比如二者都是aop 编程思想的体现都能实现权限检查,日志记录等. 不同之处 使用范围不同 Filter 是Servlet 规定的. ...

  5. 一个简单顺序表的C++实现

    /* SList.cpp Author: Qiang Xiao Time: 2015-07-11 */ #include<iostream> using namespace std; ; ...

  6. 创建Xml的将但方法和向Xml中添加数据

    </SendUserId>// ::</DateTime></AcceptUserId>       <AcceptUserId></Accept ...

  7. c#操作MySQL数据库中文出现乱码(很多问号)的解决方法

    前题:修改discuz论坛帖子老连接(从NT版转到PHP版的discuzX3),帖子里有很多引用,有链接都是.aspx这样的链接. 需要将这些链接改到当前论坛的链接. 思路:用asp.net程序获取含 ...

  8. java 成员访问修饰符

    作用域 当前类 当前包(package) 子类 其他包(package) public ok ok ok ok protected ok ok ok no default ok ok no no pr ...

  9. cdoj 1134 男神的约会 状压dp

    题目链接 给一个10*10的方格, 每个格子里面有0-9,走到一个格子, 就要在这个格子待一段时间, 时间长度为这个格子的数字. 从左上角走到右下角, 要求0-9必须每种格子都要走到, 输出最短时间. ...

  10. BootStrap学习1 输入提示

    首先参考这个页面http://www.bootcss.com/javascript.html#typeahead 我只是把里面最基本的东西抠出来了 <!DOCTYPE html> < ...