查找最小的k个元素
题目:输入n个整数,输出其中最小的k个。
例如输入1,2,3,4,5,6,7和8这8个数字,则最小的4个数字为1,2,3和4。
两种思路,无非就是时间与空间的妥协。
限制空间的时候要对原数组进行排序,最好的时间复杂度是O(nlogn),由此可见,当牺牲一部分空间的时候会换来时间复杂度的降低。进而再想到利用一个大小为K的临时数组,来存储K个最小的值,在遍历原数组的同时,更新临时数组里的数据就OK了。那么,现在的问题就是更新临时数组,怎样才能每访问一个数据,都能使临时数组里的数据是最小的K个。自然想到选出临时数组里面的最大值,和原数组里的新访问的值进行比较,判断是否替换最大值。遍历原数组的时间复杂度是O(n)那么,选择临时数组的最大值的时间复杂度要小于O(logn)才对得住牺牲的空间复杂度。。。
现在,马上想到的选择最大值的方法是进行一趟冒泡,但时间复杂度是O(K)不见得比O(logn)小。能比O(logn)小的,自然就想到了O(logk),见到logk就想到了二叉树或者说是堆。。。嗯,也就是大根堆
当元素个数小于k的时候,直接把原数组里面的数据直接放到临时数组里面,当达到k后,便建立大根堆——选出最大的和原数组的新数据进行比较(每次的时间复杂度为logk,这样共要进行n-k次,因此,时间复杂度是O(nlogk)。但是,还有一种做法,是原地比较,将原数组建成一个小根堆,然后输出k次,就可以在原数组末端得出最小的k个数据,这样的时间复杂度应该是max(O(n)[建堆]+O(klogn)[选出k个]),和利用临时数组的比不知哪个的时间复杂度会更低。
下面是利用临时数组的做法:
#include<stdio.h>
#include<stdlib.h>
void HeapAdjust(int* a,int length,int i){
int lchild = * i ;
int rchild = * i + ;
int max = i;
if(lchild < length&&a[max] < a[lchild])
max = lchild;
if(rchild < length&&a[max] < a[rchild])
max = rchild;
int temp = a[max];
if(max != i){
a[max] = a[i];
a[i] = a[max];
HeapAdjust(a,length,max);
}
}
void HeapSort(int*temp,int*a,int length,int k){//遍历原数组,更新临时数组
for(int i = k + ; i <= length; i++){
if(temp[] > a[i]){
temp[] = a[i];
HeapAdjust(temp,k,);
}
}
void HeapBuild(int* a,int length){
for(i = length / ; i > ; i--)
HeapAdjust(a,length,i);
}
void minKvalue(int* a,int length,int k){//所要求功能函数
if(k > length||k < ||length < )
return ;
int* temp = (int*)malloc(sizeof(int)*(k + ));
int i;
for(i = ; i <= k; i++)
temp[i] = a[i];
BuildHeap(temp,k);
HeapSort(temp,a,length,k);
for(i = ; i <= k; i++)
printf("%4d",temp[i]);
printf("\n");
free(temp);
}
int main(){//测试函数
int length,*a;
printf("输入数组长度:\n");
scanf("%d",&length);
a = (int*)malloc(sizeof(int)*(length + ));
printf("输入%d个数据:\n");
for(int i = ; i <= length; i++)
scanf("%d",a + i);
minKvalue(a,temp,length,k);
free(a);
查找最小的k个元素的更多相关文章
- 【编程题目】查找最小的 k 个元素
5.查找最小的 k 个元素(数组)题目:输入 n 个整数,输出其中最小的 k 个.例如输入 1,2,3,4,5,6,7 和 8 这 8 个数字,则最小的 4 个数字为 1,2,3 和 4. 算法里面学 ...
- 查找最小的k 个元素之C#算法实现
紧接着上一篇微软编程面试100题,这次想解决的是查找最小的K个元素,题目是:输入n 个整数,输出其中最小的k 个.例如输入1,2,3,4,5,6,7 和8 这8 个数字,则最小的4 个数字为1,2,3 ...
- 查找最小的K个元素,使用最大堆。
查找最小的K个元素,使用最大堆,具体代码如下: #define _CRT_SECURE_NO_WARNINGS #include <iostream> using namespace st ...
- 【Data Structure & Algorithm】 查找最小的k个元素
查找最小的k个元素 题目:输入n个整数,输出其中最小的k个. 例如输入1, 2, 3, 4, 5, 6, 7和8这八个数字,则最小的4个数字为1, 2, 3和4. 分析:这道题最简单的思路是把输入的n ...
- 5.查找最小的k个元素[Kmin]
[题目] 输入n个整数,输出其中最小的k个. 例如输入1,2,3,4,5,6,7和8这8个数字,则最小的4个数字为1,2,3和4. [分析] 这道题最简单的思路莫过于把输入的n个整数排序,这样排在最前 ...
- 5.查找最小的k个元素(数组)
题目: 输入n个整数,输出其中最小的k个,例如输入1,2,3,4,5,6,7,8这8个数,则最小的4个是1,2,3,4(输出不要求有序) 解: 利用快速排序的partition,算导上求第k大数的思想 ...
- 程序员面试50题(1)—查找最小的k个元素[算法]
题目:输入n个整数,输出其中最小的k个.例如输入1,2,3,4,5,6,7和8这8个数字,则最小的4个数字为1,2,3和4. 分析:这道题最简单的思路莫过于把输入的n个整数排序,这样排在最前面的k个数 ...
- 查找最小的k个元素 【微软面试100题 第五题】
题目要求: 输入n个整数,输出其中最小的k个. 例如:输入1,2,3,4,5,6,7,8这8个数字,则最小的4个数字为1,2,3,4. 参考资料:剑指offer第30题. 题目分析: 解法一: 用快排 ...
- IT公司100题-5-查找最小的k个元素
问题描述: 输入n 个整数,输出其中最小的k 个. 例如输入8, 7, 6, 5, 4, 3, 2, 1这8 个数字,则最小的3 个数字为3, 2, 1. 分析: 时间复杂度O(nlogn)方法: ...
随机推荐
- 【Perl学习笔记】1.perl的ref 函数
perl有引用的概念:一组数据实际上是另一组数据的引用.这些引用称为指针,第一组数据中存放的是第二组数据的头地址.引用的方式被用得相当普遍,特别是在面向对象的模块.函数的参数传递等常见.但perl对每 ...
- uva 10763 Foreign Exchange(排序比较)
题目连接:10763 Foreign Exchange 题目大意:给出交换学生的原先国家和所去的国家,交换成功的条件是如果A国给B国一个学生,对应的B国也必须给A国一个学生,否则就是交换失败. 解题思 ...
- JS闭包经典例题
上一篇文章谈论了闭包的概念和一些应用,并给出一个例题,这篇文章就此道例题进行讨论. function fun(n,o) { console.log(o); return { fun:function( ...
- Javascript Duff装置 循环展开(Javascript Loop unrolling Duff device)
Javascript 中会用到for 循环,当要循环的数据记录很多的时候,可能会对性能产生很大影响.这时我们可以考虑展开for循环,这时就要用到Duff装置(Duff Device). 先来看一个小例 ...
- 获取当前WEB应用全路径
<%String path = request.getContextPath();String basePath =request.getScheme()+"://"+req ...
- 注解方式实现Spring声明式事务管理
1.编写实体类 public class Dept { private int deptId; private String deptName; public int getDeptId() { re ...
- 5.5 Function类型
说起来ECMAScript中上面最有意思,我想那莫过于函数了,有意思的根源,则在于函数实际上是对象.每个函数都是Function类型的实例,而且都与其他引用类型一样具有属性和方法.由于函数是对象,因此 ...
- 0603 python 基础02
作业1:ANSI和utf8的区别? ASCII是用来表示英文字符的一种编码规范,每个ASCII字符占用1个字节(8bits). 可以表示的最大字符数是256,一般只用前128个(最高位为0),其中包括 ...
- Linux中fork()函数详解(转)
一.fork入门知识 一个进程,包括代码.数据和分配给进程的资源.fork()函数通过系统调用创建一个与原来进程几乎完全相同的进程,也就是两个进程可以做完全相同的事,但如果初始参数或者传入的变量不同, ...
- 如何使用autotools生成Makefile
安装autotools工具sudo apt-get install autoconf 一,四个代码文件init.s lcd.c addr.h uart.c 二,命令:autoscan 三,命令:vi ...