POJ3436 ACM Computer Factory 【最大流】
Time Limit: 1000MS | Memory Limit: 65536K | |||
Total Submissions: 5412 | Accepted: 1863 | Special Judge |
Description
As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.
Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.
Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in
arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.
Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part
must not be present, 1 — the part is required, 2 — presence of the part doesn't matter.
Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.
The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.
After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.
As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to
entrust you with solving this problem.
Input
Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,P Di,1 Di,2...Di,P,
where Qi specifies performance,Si,j — input specification for part j, Di,k — output specification for part k.
Constraints
1 ≤ P ≤ 10, 1 ≤ N ≤ 50, 1 ≤ Qi ≤ 10000
Output
Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W,
where W is the number of computers delivered from A to B per hour.
If several solutions exist, output any of them.
Sample Input
Sample input 1
3 4
15 0 0 0 0 1 0
10 0 0 0 0 1 1
30 0 1 2 1 1 1
3 0 2 1 1 1 1
Sample input 2
3 5
5 0 0 0 0 1 0
100 0 1 0 1 0 1
3 0 1 0 1 1 0
1 1 0 1 1 1 0
300 1 1 2 1 1 1
Sample input 3
2 2
100 0 0 1 0
200 0 1 1 1
Sample Output
Sample output 1
25 2
1 3 15
2 3 10
Sample output 2
4 5
1 3 3
3 5 3
1 2 1
2 4 1
4 5 1
Sample output 3
0 0
Hint
Source
题意:一个电脑由n个部件组成,如今有m台机器,每台机器能够将一个组装状态的电脑组合成还有一个状态。如(0, 1, 2)表示第一个部件未完毕。第二个部件完毕,第三个部件可完毕可不完毕。然后给出m个机器单位时间内能完毕的任务数以及详细的输入和输出状态。求整个系统单位时间内的电脑成品产量以及详细的机器间的传输关联。
题解:这题能够转换成最大流来做,一个机器的输出状态能够跟还有一个机器的输入状态关联,仅仅要它们的状态“equals”,然后再设置一个超级源点和汇点,再就能够用Dinic解题了。
#include <stdio.h>
#include <string.h>
#define maxn 55
#define inf 0x3fffffff struct Node {
int in[10], out[10]; // 拆点
int Q; // 容量
} M[maxn];
int G[maxn << 1][maxn << 1], que[maxn << 1], m, n, mp;
int G0[maxn << 1][maxn << 1], deep[maxn << 1], vis[maxn << 1]; bool equals(int a[], int b[]) {
for(int k = 0; k < n; ++k) {
if(a[k] != 2 && b[k] != 2 && a[k] != b[k])
return false;
}
return true;
} bool countLayer() {
int i, id = 0, now, front = 0;
memset(deep, 0, sizeof(deep));
deep[0] = 1; que[id++] = 0;
while(front < id) {
now = que[front++];
for(i = 0; i <= mp; ++i)
if(G[now][i] && !deep[i]) {
deep[i] = deep[now] + 1;
if(i == mp) return true;
que[id++] = i;
}
}
return false;
} int Dinic() {
int i, id = 0, maxFlow = 0, minCut, pos, u, v, now;
while(countLayer()) {
memset(vis, 0, sizeof(vis));
vis[0] = 1; que[id++] = 0;
while(id) {
now = que[id - 1];
if(now == mp) {
minCut = inf;
for(i = 1; i < id; ++i) {
u = que[i - 1]; v = que[i];
if(G[u][v] < minCut) {
minCut = G[u][v]; pos = u;
}
}
maxFlow += minCut;
for(i = 1; i < id; ++i) {
u = que[i - 1]; v = que[i];
G[u][v] -= minCut;
G[v][u] += minCut;
}
while(id && que[id - 1] != pos)
vis[que[--id]] = 0;
} else {
for(i = 0; i <= mp; ++i) {
if(G[now][i] && deep[now] + 1 == deep[i] && !vis[i]) {
que[id++] = i; vis[i] = 1; break;
}
}
if(i > mp) --id;
}
}
}
return maxFlow;
} int main() {
//freopen("stdin.txt", "r", stdin);
int i, j, sum, count;
while(scanf("%d%d", &n, &m) == 2) {
memset(G, 0, sizeof(G));
for(i = 1; i <= m; ++i) {
scanf("%d", &M[i].Q);
for(j = 0; j < n; ++j) scanf("%d", &M[i].in[j]);
for(j = 0; j < n; ++j) scanf("%d", &M[i].out[j]);
G[i][i + m] = M[i].Q;
}
// 连接出口跟入口
for(i = 1; i <= m; ++i) {
for(j = i + 1; j <= m; ++j) {
if(equals(M[i].out, M[j].in))
G[i + m][j] = inf;
if(equals(M[j].out, M[i].in))
G[j + m][i] = inf;
}
}
// 设置超级源点和超级汇点
for(i = 1; i <= m; ++i) { // 源点
G[0][i] = inf;
for(j = 0; j < n; ++j)
if(M[i].in[j] == 1) {
G[0][i] = 0; break;
}
}
mp = m << 1 | 1;
for(i = 1; i <= m; ++i) { // 汇点
G[i + m][mp] = inf;
for(j = 0; j < n; ++j)
if(M[i].out[j] != 1) {
G[i + m][mp] = 0; break;
}
}
// 备份原图
memcpy(G0, G, sizeof(G));
sum = Dinic();
count = 0;
// 推断哪些路径有流走过
for(i = m + 1; i < mp; ++i)
for(j = 1; j <= m; ++j)
if(G0[i][j] > G[i][j]) ++count;
printf("%d %d\n", sum, count);
// 输出机器间的关系
if(count)
for(i = m + 1; i < mp; ++i)
for(j = 1; j <= m; ++j)
if(G0[i][j] > G[i][j])
printf("%d %d %d\n", i - m, j, G0[i][j] - G[i][j]);
}
return 0;
}
2015.4.20
#include <stdio.h>
#include <string.h>
#include <vector> using std::vector; const int maxn = 102;
const int maxp = 10;
const int maxm = 2500;
const int inf = 0x3f3f3f3f;
const int sOut[maxp] = {};
int P, N;
struct Node2 {
int in[maxp], out[maxp];
int c;
} node[maxn]; int G[maxn][maxn], G0[maxn][maxn], queue[maxn];
bool vis[maxn]; int Layer[maxn]; bool countLayer(int s, int t) {
memset(Layer, 0, sizeof(Layer));
int id = 0, front = 0, now, i;
Layer[s] = 1; queue[id++] = s;
while(front < id) {
now = queue[front++];
for(i = s; i <= t; ++i)
if(G[now][i] && !Layer[i]) {
Layer[i] = Layer[now] + 1;
if(i == t) return true;
else queue[id++] = i;
}
}
return false;
}
// 源点,汇点,源点编号必须最小。汇点编号必须最大
int Dinic(int s, int t) {
int minCut, pos, maxFlow = 0;
int i, id = 0, u, v, now;
while(countLayer(s, t)) {
memset(vis, 0, sizeof(vis));
vis[s] = true; queue[id++] = s;
while(id) {
now = queue[id - 1];
if(now == t) {
minCut = inf;
for(i = 1; i < id; ++i) {
u = queue[i - 1];
v = queue[i];
if(G[u][v] < minCut) {
minCut = G[u][v];
pos = u;
}
}
maxFlow += minCut;
for(i = 1; i < id; ++i) {
u = queue[i - 1];
v = queue[i];
G[u][v] -= minCut;
G[v][u] += minCut;
}
while(queue[id - 1] != pos)
vis[queue[--id]] = false;
} else {
for(i = 0; i <= t; ++i) {
if(G[now][i] && Layer[now] + 1 == Layer[i] && !vis[i]) {
vis[i] = 1; queue[id++] = i; break;
}
}
if(i > t) --id;
}
}
}
return maxFlow;
} void init()
{
memset(G, 0, sizeof(G));
} bool canBeLinked(const int out[], const int in[])
{
int i;
for (i = 0; i < P; ++i) {
if (out[i] == 0 && in[i] == 1) break;
if (out[i] == 1 && in[i] == 0) break;
} return i == P;
} void getMap()
{
int u, v, c, i, j, k, cnt;
for (i = 1; i <= N; ++i) {
scanf("%d", &c);
G[i][N+i] = c; for (j = 0; j < P; ++j)
scanf("%d", &node[i].in[j]);
for (j = cnt = 0; j < P; ++j) {
scanf("%d", &node[i].out[j]);
if (node[i].out[j] == 1) ++cnt;
} if (canBeLinked(sOut, node[i].in)) G[0][i] = inf;
if (cnt == P) G[i+N][2*N+1] = inf;
} for (i = 1; i <= N; ++i) {
// connection
for (j = 1; j <= N; ++j) {
if (i != j && canBeLinked(node[i].out, node[j].in)) {
G[i+N][j] = inf;
// printf("...%d..%d...\n", i + N, j);
}
}
} memcpy(G0, G, sizeof(G));
/*
for (i = 1; i <= N; ++i) {
printf("...%d: ", i);
for (j = 0; j < P; ++j)
printf("%d%c", node[i].in[j], j == P - 1 ? '\n' : ' ');
for (j = 0; j < P; ++j)
printf("%d%c", node[i].out[j], j == P - 1 ? '\n' : ' ');
} for (i = 0; i <= 2 * N + 1; ++i) {
printf("%d: ", i);
for (j = 0; j <= 2 * N + 1; ++j) {
printf("%d%c", G[i][j], j == 2*N+1 ? '\n' : ' ');
}
}*/
} int solve()
{
int ret = Dinic(0, 2 * N + 1);
vector<int> vec;
int cnt = 0, i, j, u, v, c; for (i = 1; i <= N; ++i) {
for (j = 1; j <= N; ++j) {
if (G[i+N][j] < G0[i+N][j]) {
vec.push_back(i);
vec.push_back(j);
vec.push_back(G0[i+N][j] - G[i+N][j]);
}
}
} printf("%d %d\n", ret, vec.size() / 3);
for (i = 0; i < vec.size(); ) {
u = vec[i++];
v = vec[i++];
c = vec[i++];
printf("%d %d %d\n", u, v, c);
}
} int main()
{
while (~scanf("%d%d", &P, &N)) {
init();
getMap();
solve();
}
return 0;
}
POJ3436 ACM Computer Factory 【最大流】的更多相关文章
- POJ3436 ACM Computer Factory —— 最大流
题目链接:https://vjudge.net/problem/POJ-3436 ACM Computer Factory Time Limit: 1000MS Memory Limit: 655 ...
- poj-3436.ACM Computer Factory(最大流 + 多源多汇 + 结点容量 + 路径打印 + 流量统计)
ACM Computer Factory Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10940 Accepted: ...
- POJ3436 ACM Computer Factory(最大流)
题目链接. 分析: 题意很难懂. 大体是这样的:给每个点的具体情况,1.容量 2.进入状态 3.出去状态.求最大流. 因为有很多点,所以如果一个点的出去状态满足另一个点的进入状态,则这两个点可以连一条 ...
- POJ-3436 ACM Computer Factory 最大流 为何拆点
题目链接:https://cn.vjudge.net/problem/POJ-3436 题意 懒得翻,找了个题意. 流水线上有N台机器装电脑,电脑有P个部件,每台机器有三个参数,产量,输入规格,输出规 ...
- poj3436 ACM Computer Factory, 最大流,输出路径
POJ 3436 ACM Computer Factory 电脑公司生产电脑有N个机器.每一个机器单位时间产量为Qi. 电脑由P个部件组成,每一个机器工作时仅仅能把有某些部件的半成品电脑(或什么都没有 ...
- POJ3436 ACM Computer Factory(最大流/Dinic)题解
ACM Computer Factory Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8944 Accepted: 3 ...
- POJ-3436 ACM Computer Factory(网络流EK)
As you know, all the computers used for ACM contests must be identical, so the participants compete ...
- Poj 3436 ACM Computer Factory (最大流)
题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...
- POJ-3436:ACM Computer Factory (Dinic最大流)
题目链接:http://poj.org/problem?id=3436 解题心得: 题目真的是超级复杂,但解出来就是一个网络流,建图稍显复杂.其实提炼出来就是一个工厂n个加工机器,每个机器有一个效率w ...
随机推荐
- BZOJ 1797: [Ahoi2009]Mincut 最小割( 网络流 )
先跑网络流, 然后在残余网络tarjan缩点. 考虑一条边(u,v): 当且仅当scc[u] != scc[v], (u,v)可能出现在最小割中...然而我并不会证明 当且仅当scc[u] = scc ...
- pay包注释(二)
@login_required()def to_register(request): return render_to_response("pay/register_yeepay.ht ...
- 如何去掉IE控件的垂直滚动条(使用QAxWidget加载IE控件)
如果使用MFC的CHtmlView或Qt的QAxWidget加载IE控件,载入html文件后都会自动带一个垂直滚动条,我们不想要这个滚动条,改怎么办呢?搜索了一下“隐藏IE控件滚动条”,发现在 htt ...
- Debian上安装TightVNC Server
from:www.penlug.org/twiki/bin/view/Main/TightVNC Using VNC The tool vncserver allows you to run ad ...
- Android实现 再按一次退出 的三种方法 durationTime、timerTask 和Handler
目前很多Android应用都会实现按返回键时提示“再按一次推退出” 在这篇文章中总结了各家的方法,一般都是监听Activity的onKeyDown 或者onBackPressed方法 方法一: 直接计 ...
- SQL Server 基础 04 函数与分组查询数据
函数与分组查询数据 系统函数分 聚合函数.数据类型转换函数.日期函数.数学函数 . . . 1. 聚合函数 主要是对一组值进行计算,然后返回一个值. 聚合函数包括 sum(求和).avg(求平均值). ...
- 简要解析XMPP框架及iOS-Objective-C的使用
前言:这两天看了XMPP框架,查阅了一些资料,写下这篇文章记录一下学习笔记 一.简要解析XMPP核心部分 XMPP框架分为两个部分 1.核心部分 2.扩展部分 扩展部分主要讲好友列表(roster). ...
- MinGW是什么
MinGW是什么? MinGW是建立在gcc和binutils项目上的,用来编译和连接代码,使之运行在windows系统上: 提供c.c++和fortran编译器和相关工具: MinGW=Minima ...
- 【AC大牛陈鸿的ACM总结贴】【ID AekdyCoin】人家当初也一样是菜鸟
acm总结帖_By AekdyCoin 各路大牛都在中国大陆的5个赛区结束以后纷纷发出了退役帖,总结帖,或功德圆满,或死不瞑目,而这也许又会造就明年的各种"炸尸"风波.为了考虑在发 ...
- c语言:union,大小端
union: 不允许只用联合变量名作赋值或其它操作. 也不允许对联合变量作初始化赋值,赋值只能在程序中进行. 小端存储: 以字节为单位,低存低,高存高. 任何数据在内存中都是以二进制(1或着0)顺序存 ...