ACM Computer Factory
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5412   Accepted: 1863   Special Judge

Description

As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.

Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.

Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in
arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.

Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part
must not be present, 1 — the part is required, 2 — presence of the part doesn't matter.

Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.

The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.

After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.

As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to
entrust you with solving this problem.

Input

Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,P Di,1 Di,2...Di,P,
where Qi specifies performance,Si,j — input specification for part jDi,k — output specification for part k.

Constraints

1 ≤ P ≤ 10, 1 ≤ ≤ 50, 1 ≤ Qi ≤ 10000

Output

Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W,
where W is the number of computers delivered from A to B per hour.

If several solutions exist, output any of them.

Sample Input

Sample input 1
3 4
15 0 0 0 0 1 0
10 0 0 0 0 1 1
30 0 1 2 1 1 1
3 0 2 1 1 1 1
Sample input 2
3 5
5 0 0 0 0 1 0
100 0 1 0 1 0 1
3 0 1 0 1 1 0
1 1 0 1 1 1 0
300 1 1 2 1 1 1
Sample input 3
2 2
100 0 0 1 0
200 0 1 1 1

Sample Output

Sample output 1
25 2
1 3 15
2 3 10
Sample output 2
4 5
1 3 3
3 5 3
1 2 1
2 4 1
4 5 1
Sample output 3
0 0

Hint

Bold texts appearing in the sample sections are informative and do not form part of the actual data.

Source

Northeastern Europe 2005, Far-Eastern Subregion

题意:一个电脑由n个部件组成,如今有m台机器,每台机器能够将一个组装状态的电脑组合成还有一个状态。如(0, 1, 2)表示第一个部件未完毕。第二个部件完毕,第三个部件可完毕可不完毕。然后给出m个机器单位时间内能完毕的任务数以及详细的输入和输出状态。求整个系统单位时间内的电脑成品产量以及详细的机器间的传输关联。

题解:这题能够转换成最大流来做,一个机器的输出状态能够跟还有一个机器的输入状态关联,仅仅要它们的状态“equals”,然后再设置一个超级源点和汇点,再就能够用Dinic解题了。

#include <stdio.h>
#include <string.h>
#define maxn 55
#define inf 0x3fffffff struct Node {
int in[10], out[10]; // 拆点
int Q; // 容量
} M[maxn];
int G[maxn << 1][maxn << 1], que[maxn << 1], m, n, mp;
int G0[maxn << 1][maxn << 1], deep[maxn << 1], vis[maxn << 1]; bool equals(int a[], int b[]) {
for(int k = 0; k < n; ++k) {
if(a[k] != 2 && b[k] != 2 && a[k] != b[k])
return false;
}
return true;
} bool countLayer() {
int i, id = 0, now, front = 0;
memset(deep, 0, sizeof(deep));
deep[0] = 1; que[id++] = 0;
while(front < id) {
now = que[front++];
for(i = 0; i <= mp; ++i)
if(G[now][i] && !deep[i]) {
deep[i] = deep[now] + 1;
if(i == mp) return true;
que[id++] = i;
}
}
return false;
} int Dinic() {
int i, id = 0, maxFlow = 0, minCut, pos, u, v, now;
while(countLayer()) {
memset(vis, 0, sizeof(vis));
vis[0] = 1; que[id++] = 0;
while(id) {
now = que[id - 1];
if(now == mp) {
minCut = inf;
for(i = 1; i < id; ++i) {
u = que[i - 1]; v = que[i];
if(G[u][v] < minCut) {
minCut = G[u][v]; pos = u;
}
}
maxFlow += minCut;
for(i = 1; i < id; ++i) {
u = que[i - 1]; v = que[i];
G[u][v] -= minCut;
G[v][u] += minCut;
}
while(id && que[id - 1] != pos)
vis[que[--id]] = 0;
} else {
for(i = 0; i <= mp; ++i) {
if(G[now][i] && deep[now] + 1 == deep[i] && !vis[i]) {
que[id++] = i; vis[i] = 1; break;
}
}
if(i > mp) --id;
}
}
}
return maxFlow;
} int main() {
//freopen("stdin.txt", "r", stdin);
int i, j, sum, count;
while(scanf("%d%d", &n, &m) == 2) {
memset(G, 0, sizeof(G));
for(i = 1; i <= m; ++i) {
scanf("%d", &M[i].Q);
for(j = 0; j < n; ++j) scanf("%d", &M[i].in[j]);
for(j = 0; j < n; ++j) scanf("%d", &M[i].out[j]);
G[i][i + m] = M[i].Q;
}
// 连接出口跟入口
for(i = 1; i <= m; ++i) {
for(j = i + 1; j <= m; ++j) {
if(equals(M[i].out, M[j].in))
G[i + m][j] = inf;
if(equals(M[j].out, M[i].in))
G[j + m][i] = inf;
}
}
// 设置超级源点和超级汇点
for(i = 1; i <= m; ++i) { // 源点
G[0][i] = inf;
for(j = 0; j < n; ++j)
if(M[i].in[j] == 1) {
G[0][i] = 0; break;
}
}
mp = m << 1 | 1;
for(i = 1; i <= m; ++i) { // 汇点
G[i + m][mp] = inf;
for(j = 0; j < n; ++j)
if(M[i].out[j] != 1) {
G[i + m][mp] = 0; break;
}
}
// 备份原图
memcpy(G0, G, sizeof(G));
sum = Dinic();
count = 0;
// 推断哪些路径有流走过
for(i = m + 1; i < mp; ++i)
for(j = 1; j <= m; ++j)
if(G0[i][j] > G[i][j]) ++count;
printf("%d %d\n", sum, count);
// 输出机器间的关系
if(count)
for(i = m + 1; i < mp; ++i)
for(j = 1; j <= m; ++j)
if(G0[i][j] > G[i][j])
printf("%d %d %d\n", i - m, j, G0[i][j] - G[i][j]);
}
return 0;
}

2015.4.20

#include <stdio.h>
#include <string.h>
#include <vector> using std::vector; const int maxn = 102;
const int maxp = 10;
const int maxm = 2500;
const int inf = 0x3f3f3f3f;
const int sOut[maxp] = {};
int P, N;
struct Node2 {
int in[maxp], out[maxp];
int c;
} node[maxn]; int G[maxn][maxn], G0[maxn][maxn], queue[maxn];
bool vis[maxn]; int Layer[maxn]; bool countLayer(int s, int t) {
memset(Layer, 0, sizeof(Layer));
int id = 0, front = 0, now, i;
Layer[s] = 1; queue[id++] = s;
while(front < id) {
now = queue[front++];
for(i = s; i <= t; ++i)
if(G[now][i] && !Layer[i]) {
Layer[i] = Layer[now] + 1;
if(i == t) return true;
else queue[id++] = i;
}
}
return false;
}
// 源点,汇点,源点编号必须最小。汇点编号必须最大
int Dinic(int s, int t) {
int minCut, pos, maxFlow = 0;
int i, id = 0, u, v, now;
while(countLayer(s, t)) {
memset(vis, 0, sizeof(vis));
vis[s] = true; queue[id++] = s;
while(id) {
now = queue[id - 1];
if(now == t) {
minCut = inf;
for(i = 1; i < id; ++i) {
u = queue[i - 1];
v = queue[i];
if(G[u][v] < minCut) {
minCut = G[u][v];
pos = u;
}
}
maxFlow += minCut;
for(i = 1; i < id; ++i) {
u = queue[i - 1];
v = queue[i];
G[u][v] -= minCut;
G[v][u] += minCut;
}
while(queue[id - 1] != pos)
vis[queue[--id]] = false;
} else {
for(i = 0; i <= t; ++i) {
if(G[now][i] && Layer[now] + 1 == Layer[i] && !vis[i]) {
vis[i] = 1; queue[id++] = i; break;
}
}
if(i > t) --id;
}
}
}
return maxFlow;
} void init()
{
memset(G, 0, sizeof(G));
} bool canBeLinked(const int out[], const int in[])
{
int i;
for (i = 0; i < P; ++i) {
if (out[i] == 0 && in[i] == 1) break;
if (out[i] == 1 && in[i] == 0) break;
} return i == P;
} void getMap()
{
int u, v, c, i, j, k, cnt;
for (i = 1; i <= N; ++i) {
scanf("%d", &c);
G[i][N+i] = c; for (j = 0; j < P; ++j)
scanf("%d", &node[i].in[j]);
for (j = cnt = 0; j < P; ++j) {
scanf("%d", &node[i].out[j]);
if (node[i].out[j] == 1) ++cnt;
} if (canBeLinked(sOut, node[i].in)) G[0][i] = inf;
if (cnt == P) G[i+N][2*N+1] = inf;
} for (i = 1; i <= N; ++i) {
// connection
for (j = 1; j <= N; ++j) {
if (i != j && canBeLinked(node[i].out, node[j].in)) {
G[i+N][j] = inf;
// printf("...%d..%d...\n", i + N, j);
}
}
} memcpy(G0, G, sizeof(G));
/*
for (i = 1; i <= N; ++i) {
printf("...%d: ", i);
for (j = 0; j < P; ++j)
printf("%d%c", node[i].in[j], j == P - 1 ? '\n' : ' ');
for (j = 0; j < P; ++j)
printf("%d%c", node[i].out[j], j == P - 1 ? '\n' : ' ');
} for (i = 0; i <= 2 * N + 1; ++i) {
printf("%d: ", i);
for (j = 0; j <= 2 * N + 1; ++j) {
printf("%d%c", G[i][j], j == 2*N+1 ? '\n' : ' ');
}
}*/
} int solve()
{
int ret = Dinic(0, 2 * N + 1);
vector<int> vec;
int cnt = 0, i, j, u, v, c; for (i = 1; i <= N; ++i) {
for (j = 1; j <= N; ++j) {
if (G[i+N][j] < G0[i+N][j]) {
vec.push_back(i);
vec.push_back(j);
vec.push_back(G0[i+N][j] - G[i+N][j]);
}
}
} printf("%d %d\n", ret, vec.size() / 3);
for (i = 0; i < vec.size(); ) {
u = vec[i++];
v = vec[i++];
c = vec[i++];
printf("%d %d %d\n", u, v, c);
}
} int main()
{
while (~scanf("%d%d", &P, &N)) {
init();
getMap();
solve();
}
return 0;
}

POJ3436 ACM Computer Factory 【最大流】的更多相关文章

  1. POJ3436 ACM Computer Factory —— 最大流

    题目链接:https://vjudge.net/problem/POJ-3436 ACM Computer Factory Time Limit: 1000MS   Memory Limit: 655 ...

  2. poj-3436.ACM Computer Factory(最大流 + 多源多汇 + 结点容量 + 路径打印 + 流量统计)

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10940   Accepted:  ...

  3. POJ3436 ACM Computer Factory(最大流)

    题目链接. 分析: 题意很难懂. 大体是这样的:给每个点的具体情况,1.容量 2.进入状态 3.出去状态.求最大流. 因为有很多点,所以如果一个点的出去状态满足另一个点的进入状态,则这两个点可以连一条 ...

  4. POJ-3436 ACM Computer Factory 最大流 为何拆点

    题目链接:https://cn.vjudge.net/problem/POJ-3436 题意 懒得翻,找了个题意. 流水线上有N台机器装电脑,电脑有P个部件,每台机器有三个参数,产量,输入规格,输出规 ...

  5. poj3436 ACM Computer Factory, 最大流,输出路径

    POJ 3436 ACM Computer Factory 电脑公司生产电脑有N个机器.每一个机器单位时间产量为Qi. 电脑由P个部件组成,每一个机器工作时仅仅能把有某些部件的半成品电脑(或什么都没有 ...

  6. POJ3436 ACM Computer Factory(最大流/Dinic)题解

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8944   Accepted: 3 ...

  7. POJ-3436 ACM Computer Factory(网络流EK)

    As you know, all the computers used for ACM contests must be identical, so the participants compete ...

  8. Poj 3436 ACM Computer Factory (最大流)

    题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...

  9. POJ-3436:ACM Computer Factory (Dinic最大流)

    题目链接:http://poj.org/problem?id=3436 解题心得: 题目真的是超级复杂,但解出来就是一个网络流,建图稍显复杂.其实提炼出来就是一个工厂n个加工机器,每个机器有一个效率w ...

随机推荐

  1. IBATIS动态SQL

    转自:http://www.cnblogs.com/phoebus0501/archive/2011/05/16/2048126.html 直接使用JDBC一个非常普遍的问题就是动态SQL.使用参数值 ...

  2. 【Hibernate】HQL new map

    HQL 查询如果需要带出对象(比如:OneToOne子对象)的一两个属性,而不是全部带出.可以使用 select new map的方法带出. 1.lazy还是设置为false /**关联属性对象*/ ...

  3. 在Mac上配置/使用Github

    文/天才晓波(简书作者)原文链接:http://www.jianshu.com/p/20eee155bbee著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”. 先简单介绍一下Git和Git ...

  4. ubuntu安装ulipad

    以下内容部分我是从其他地方找的,并且做了适当的修改,亲身测试可以安装成功   在安装ulipad之前,先安装一个超级好用的Python的交互式Shell--iPython.iPython功能很强大, ...

  5. BZOJ 1797: [Ahoi2009]Mincut 最小割( 网络流 )

    先跑网络流, 然后在残余网络tarjan缩点. 考虑一条边(u,v): 当且仅当scc[u] != scc[v], (u,v)可能出现在最小割中...然而我并不会证明 当且仅当scc[u] = scc ...

  6. java面向对象中的String类中12种常用的方法

    1.字符串与字符数组的转换 字符串可以使用toCharArray()方法变成一个字符数组,也可以使用String类的构造方法把一个字符数组变成一个字符串. public class StringAPI ...

  7. ZOJ 2794 Just Pour the Water 【矩阵快速幂】

    给你n个杯子,每次有特定的到水规则,倒m次请问最后每个被子里还有多少水 我们很容易发现每次变化的规则相同,那么可以set 一个矩阵存放 然后多次倒水就相当于矩阵相乘,在m 范围达到(1<= M  ...

  8. JQuery插件使用小结

    JQuery插件使用小结

  9. Spring连接MySQL、Oracle和SQL Server

    其中applicationContext.xml的配置如下: <?xml version="1.0" encoding="UTF-8"?> < ...

  10. Winform TabControl控件使用

    运行效果: 代码: /// <summary> /// 添加选项卡 /// </summary> /// <param name="sender"&g ...