http://uoj.ac/problem/125

我真是日狗了。。。。。。

果然还是没有耐心读题,搞到读题读错了2个地方,结果调试了半天。。。。。。

言归正传。

动态规划。

这种题目很常见。

我们发现竖着做比较麻烦,那么可以横着做。

打竖将"NOI“分成11种类型。

F[i][j][k][l]表示第i列的涂色部分的上边界为j,下边界为k,类型为l。

然后转移。

从2类型->2类型有点麻烦,我们可以借组一个辅助数组b,见程序注释部分。

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<fstream>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<utility>
#include<set>
#include<bitset>
#include<vector>
#include<functional>
#include<deque>
#include<cctype>
#include<climits>
#include<complex>
//#include<bits/stdc++.h>适用于CF,UOJ,但不适用于poj using namespace std; typedef long long LL;
typedef double DB;
typedef pair<int,int> PII;
typedef complex<DB> CP; #define mmst(a,v) memset(a,v,sizeof(a))
#define mmcy(a,b) memcpy(a,b,sizeof(a))
#define re(i,a,b) for(i=a;i<=b;i++)
#define red(i,a,b) for(i=a;i>=b;i--)
#define fi first
#define se second
#define m_p(a,b) make_pair(a,b)
#define SF scanf
#define PF printf
#define two(k) (1<<(k)) template<class T>inline T sqr(T x){return x*x;}
template<class T>inline void upmin(T &t,T tmp){if(t>tmp)t=tmp;}
template<class T>inline void upmax(T &t,T tmp){if(t<tmp)t=tmp;} const DB EPS=1e-;
inline int sgn(DB x){if(abs(x)<EPS)return ;return(x>)?:-;}
const DB Pi=acos(-1.0); inline void clear(vector<int> *A,int a,int b){int i,j;A->clear();re(i,,a)re(j,,b)A[i].push_back();} inline int gint()
{
int res=;bool neg=;char z;
for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar());
if(z==EOF)return ;
if(z=='-'){neg=;z=getchar();}
for(;z!=EOF && isdigit(z);res=res*+z-'',z=getchar());
return (neg)?-res:res;
}
inline LL gll()
{
LL res=;bool neg=;char z;
for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar());
if(z==EOF)return ;
if(z=='-'){neg=;z=getchar();}
for(;z!=EOF && isdigit(z);res=res*+z-'',z=getchar());
return (neg)?-res:res;
} const int maxN=;
const int maxM=;
const int INF=; int N,M;
int mp[maxN+][maxM+];
int sum[maxM+][maxN+];
int x,y,F[][maxN+][maxN+][];
int ans; inline int ask(int r,int x,int y){return sum[r][y]-sum[r][x-];} int b[maxN+]; inline void clear(int x){int j,k,l;re(j,,N+)re(k,,N+)re(l,,+) F[x][j][k][l]=-INF;} int main()
{
freopen("penman.in","r",stdin);
freopen("penman.out","w",stdout);
int i,j,k;
N=gint();M=gint();
re(i,,N)re(j,,M)mp[i][j]=gint();
re(i,,M)re(j,,N)sum[i][j]=sum[i][j-]+mp[j][i];
x=;y=;
clear(y);
re(j,,N)re(k,j,N)F[y][j][k][]=ask(,j,k);
ans=-INF;
re(i,,M)
{
int t; swap(x,y);
clear(y); //
re(j,,N)re(k,j,N)
{
upmax(F[y][j][k][],F[x][j][k][]+ask(i,j,k));
upmax(F[y][j][k][],ask(i,j,k));
} //
re(j,,N)
{
t=F[x][j][N][];
red(k,N-,j)
{
upmax(F[y][j][k][],t+ask(i,j,k));
upmax(t,F[x][j][k][]);
}
}
/*
(1)
l=j
r=j..k
*/
re(j,,N)
{
t=-INF;
re(k,j,N)
{
upmax(t,F[x][j][k][]);
upmax(F[y][j][k][],t+ask(i,j,k));
}
}
/*
(2)
re(l,1,j-1)
re(r,j-1,k)
F[i-1][l][r][2]
b[r]表示F[i-1][1..j-1][r][2]的最大值,b[r]随着j的递增的递增
求b[j-1...k]的最大值
*/
re(j,,N+)b[j]=-INF;
re(j,,N)
{
t=-INF;
re(k,j-,N)
{
upmax(b[k],F[x][j-][k][]);
upmax(t,b[k]);
if(k>=j) upmax(F[y][j][k][],t+ask(i,j,k));
}
}
/*int l,r;
re(j,1,N)re(k,j,N)re(l,j,j)re(r,j,k)upmax(F[y][j][k][2],F[x][l][r][2]+ask(i,j,k));
re(j,1,N)re(k,j,N)re(l,1,j-1)re(r,j-1,k)upmax(F[y][j][k][2],F[x][l][r][2]+ask(i,j,k));*/ //
re(j,,N)re(k,j,N)upmax(F[y][j][k][],F[x][j][k][]+ask(i,j,k));
re(k,,N)
{
t=F[x][k][k][];
red(j,k-,)
{
upmax(F[y][j][k][],t+ask(i,j,k));
upmax(t,F[x][j][k][]);
}
} //
re(j,,N)re(k,j,N)upmax(F[y][j][k][],F[x][j][k][]);
t=-INF;
re(j,,N)
re(k,j,N)
upmax(t,F[x][j][k][]);
re(j,,N)re(k,j,N)upmax(F[y][j][k][],t); //
re(j,,N)re(k,j+,N)
{
upmax(F[y][j][k][],F[x][j][k][]+ask(i,j,k));
} //
re(j,,N)re(k,j+,N)
{
upmax(F[y][j][k][],F[x][j][k][]+ask(i,j,j)+ask(i,k,k));
upmax(F[y][j][k][],F[x][j][k][]+ask(i,j,j)+ask(i,k,k));
} //
re(j,,N)re(k,j+,N)
{
upmax(F[y][j][k][],F[x][j][k][]+ask(i,j,k));
} //
re(j,,N)re(k,j,N)upmax(F[y][j][k][],F[x][j][k][]);
t=-INF;
re(j,,N)re(k,j+,N)upmax(t,F[x][j][k][]);
re(j,,N)re(k,j,N)upmax(F[y][j][k][],t); //
re(j,,N)re(k,j+,N)
{
upmax(F[y][j][k][],F[x][j][k][]+ask(i,j,j)+ask(i,k,k));
upmax(F[y][j][k][],F[x][j][k][]+ask(i,j,j)+ask(i,k,k));
} //
re(j,,N)re(k,j+,N)
{
upmax(F[y][j][k][],F[x][j][k][]+ask(i,j,k));
upmax(F[y][j][k][],F[x][j][k][]+ask(i,j,k));
} //
re(j,,N)re(k,j+,N)
{
upmax(F[y][j][k][],F[x][j][k][]+ask(i,j,j)+ask(i,k,k));
upmax(F[y][j][k][],F[x][j][k][]+ask(i,j,j)+ask(i,k,k));
upmax(ans,F[y][j][k][]);
} }
cout<<ans<<endl;
return ;
}

NOI 2013 书法家的更多相关文章

  1. 【BZOJ 3242】【UOJ #126】【CodeVS 3047】【NOI 2013】快餐店

    http://www.lydsy.com/JudgeOnline/problem.php?id=3242 http://uoj.ac/problem/126 http://codevs.cn/prob ...

  2. NOI 2013 矩阵游戏

    http://uoj.ac/problem/124 矩阵乘法. 十进制快速幂. 刚开始还傻傻地写二进制快速幂,然后陈老师一语点醒梦中人...... #include<cstdio> #in ...

  3. 「BZOJ 3242」「NOI 2013」快餐店「基环树」

    题意 基环树上找到一个点(可以在边上)使得它到树上最远点的距离最小,输出最小距离 题解 如果是一棵树,答案就是树的直径\(/2\) 如果是基环树,那么很好证明删去环上的某一条边是不影响答案的.于是断环 ...

  4. CF 329A(Purification-贪心-非DLX)

    A. Purification time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  5. 2013 Asia Changsha Regional Contest---Josephina and RPG(DP)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4800 Problem Description A role-playing game (RPG and ...

  6. SharePoint 2013: A feature with ID has already been installed in this farm

    使用Visual Studio 2013创建一个可视web 部件,当右击项目选择"部署"时报错: "Error occurred in deployment step ' ...

  7. Visual Studio 2013 添加一般应用程序(.ashx)文件到SharePoint项目

    默认,在用vs2013开发SharePoint项目时,vs没有提供一般应用程序(.ashx)的项目模板,本文解决此问题. 以管理员身份启动vs2013,创建一个"SharePoint 201 ...

  8. SharePoint 2013 create workflow by SharePoint Designer 2013

    这篇文章主要基于上一篇http://www.cnblogs.com/qindy/p/6242714.html的基础上,create a sample workflow by SharePoint De ...

  9. Install and Configure SharePoint 2013 Workflow

    这篇文章主要briefly introduce the Install and configure SharePoint 2013 Workflow. Microsoft 推出了新的Workflow ...

随机推荐

  1. MKMapView and Zoom Levels: A Visual Guide

    原帖:http://troybrant.net/blog/2010/01/mkmapview-and-zoom-levels-a-visual-guide/ So, how exactly does ...

  2. hibernate之关系映射上

    分别创建user,farm,user_general三张表 create table user( uuid bigint not null auto_increment, name ), age in ...

  3. css的存在形式以及优先级

    css的存在形式以及优先级 css不仅仅可以在每个head标签中定义,而且也可以写在一个文件中,每个页面即可进行引用,这样可以做到重复利用. css文件的写法如下: common.css .c1{ h ...

  4. 【C#基础】byte二进制数组转string

    //解析post请求数组返回的数组 //解码返回的二进制数组 public string DecodeBytes(byte[] c) { string html = string.Empty; try ...

  5. MySQL删除外键定义的方法

    MySQL外键在定以后,如果我们不再需要这个外键,可以进行删除操作,下面就为您介绍MySQL删除外键定义的方法,供您参考. 不知道大家有没有发现,在定义外键的时候articles.member_id外 ...

  6. android requestDisallowInterceptTouchEvent用途

    ViewPager来实现左右滑动切换tab.假设tab的某一项中嵌入了水平可滑动的View就会让你有些不爽,比方想滑动tab项中的可水平滑动的控件,却导致tab切换. 由于Android事件机制是从父 ...

  7. swift 中String常用操作

    1.  字符串定义 var s = "aaaaaa" // 两个字符串均为空并等价. var emptyString = ""   var anotherEmp ...

  8. 在VM中安装Android4.4连接小米手环 之 在VM中安装Android4.4

    今天刚买了个小米手环,系统须要4.4及以上,但自己手机系统版本号不匹配.故打算在VM中安装Android4.4连接小米手环. 这一节先介绍在VM中安装Android4.4(怎么安装VM就不介绍了) 1 ...

  9. .NET基础拾遗(7)多线程开发基础1

    一.多线程编程的基本概念 1.1 操作系统层面的进程和线程 (1)进程 进程代表了操作系统上运行着的一个应用程序.进程拥有自己的程序块,拥有独占的资源和数据且可以被操作系统调度. But,即使是同一个 ...

  10. wed网页开发面试笔试必备小知识

    HTML中行内元素与块级元素的区别: 在标准文档流里面,块级元素具有以下特点: ①总是在新行上开始,占据一整行: ②高度,行高以及外边距和内边距都可控制: ③宽带始终是与浏览器宽度一样,与内容无关: ...