hdu 4746 Mophues
莫比乌斯反演。先初始化出所有数有多少个质因子和mobius。然后处理mob_sum[ i ][ j ],表示当公因子的因子个数小于等于 j 个的mobius前 i 项和。然后分块求和即可。
分块处理部分见(不会莫比乌斯反演的同学也可以去这里学一下)http://wenku.baidu.com/view/fbe263d384254b35eefd34eb.html。
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define CLR(a, b) memset(a, b, sizeof(a)) using namespace std;
const int N = 500100; bool isp[N];
int p[N], cnt[N], mob[N];
int mob_sum[N][20]; #define mbs mob_sum void Mobius()
{
CLR(isp, 0);CLR(cnt, 0);
int tot = 0;mob[1] = 1;
for(int i = 2; i < N; i ++)
{
if(!isp[i])
{
p[tot ++] = i;
mob[i] = -1;cnt[i] = 1;
}
for(int j = 0; j < tot && p[j] * i < N; j ++)
{
isp[p[j] * i] = true;
cnt[i * p[j]] = cnt[i] + 1;
if(i % p[j] == 0)
{
mob[p[j] * i] = 0;
break;
}
else
{
mob[p[j] * i] = -mob[i];
}
}
}
} void init()
{
Mobius();CLR(mbs, 0);
for(int i = 1; i < N; i ++)//求出单项的mbs[i][j],表示的是i为公因子时的情况。
for(int j = i; j < N; j += i)
{
mbs[j][cnt[i]] += mob[j / i];
}//以下是求前缀和。
for(int i = 1; i < N; i ++)
for(int j = 0; j < 19; j ++)
{
mbs[i][j] += mbs[i - 1][j];
}
for(int i = 0; i < N; i ++)
for(int j = 1; j < 19; j ++)
{
mbs[i][j] += mbs[i][j - 1];
}
} int main()
{
//freopen("input.txt", "r", stdin);
int q, n, m, p;LL ans;
init();scanf("%d", &q);
while(q --)
{
scanf("%d%d%d", &n, &m, &p);
if(p >= 19) {printf("%I64d\n", (LL)n * m); continue;}
if(n > m) swap(n, m);
ans = 0;
for(int i = 1, j = 1; i < n; i = j + 1)
{
j = min(n / (n / i), m / (m / i));
ans += (LL)(mbs[j][p] - mbs[i - 1][p]) * (n / i) * (m / i);
}
printf("%I64d\n", ans);
}
}
hdu 4746 Mophues的更多相关文章
- HDU 4746 Mophues【莫比乌斯反演】
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4746 题意: 1≤x,y≤n , 求gcd(x,y)分解后质因数个数小于等k的(x,y)的对数. 分 ...
- HDU 4746 Mophues (莫比乌斯反演应用)
Mophues Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 327670/327670 K (Java/Others) Total ...
- hdu 4746 Mophues 莫比乌斯反演+前缀和优化
Mophues 题意:给出n, m, p,求有多少对a, b满足gcd(a, b)的素因子个数<=p,(其中1<=a<=n, 1<=b<=m) 有Q组数据:(n, m, ...
- HDU 4746 Mophues 莫比乌斯反演
分析: http://blog.csdn.net/acdreamers/article/details/12871643 分析参见这一篇 http://wenku.baidu.com/view/fbe ...
- HDU 4746 Mophues(莫比乌斯反演)
题意:求\(1\leq i \leq N,1\leq j \leq M,gcd(i,j)\)的质因子个于等于p的对数. 分析:加上了对质因子个数的限制. 设\(f(d):[gcd(i,j)=d]\) ...
- HDU 4746 Mophues(莫比乌斯反演)题解
题意: \(Q\leq5000\)次询问,每次问你有多少对\((x,y)\)满足\(x\in[1,n],y\in[1,m]\)且\(gcd(x,y)\)的质因数分解个数小于等于\(p\).\(n,m, ...
- HDU 4746 HDOJ Mophues 2013杭州网赛I题
比赛的时候就预感到这题能出,但是会耗时比较多.结果最后是出了,但是有更简单的题没出. 是不是错误的决策呢?谁知道呢 题目意思: 定义f(x) = x分解质因数出来的因子个数 如 x = p0 * p0 ...
- Mophues HDU - 4746 (莫比乌斯反演)
Mophues \[ Time Limit: 10000 ms\quad Memory Limit: 262144 kB \] 题意 求出满足 \(gcd\left(a,b\right) = k\), ...
- HDU 4746 (莫比乌斯反演) Mophues
这道题看巨巨的题解看了好久,好久.. 本文转自hdu4746(莫比乌斯反演) 题意:给出n, m, p,求有多少对a, b满足gcd(a, b)的素因子个数<=p,(其中1<=a<= ...
随机推荐
- 使用 Spring 2.5 基于注解驱动的 Spring MVC--转
概述 继 Spring 2.0 对 Spring MVC 进行重大升级后,Spring 2.5 又为 Spring MVC 引入了注解驱动功能.现在你无须让 Controller 继承任何接口,无需在 ...
- Linux network setting.
Lubuntu network setting. //1. Vi /etc/network/interfaces Add:auto eth0iface eth0 inet dhcp //2. Vi / ...
- css的clip裁剪
clip 属性是用来设置元素的形状.用来剪裁绝对定位元素(absolute or fixed). clip有三种取值:auto |inherit|rect.inherit是继承,ie不支持这个属性, ...
- 纯 CSS 创建各种不同的图形形状
使用代码 矩形 .rectangle { width: 250px; height: 150px; background-color: #6DC75F; } <div></div&g ...
- Activity的学习
安卓的四大组件分别是 Activity ,Service服务, BroadcastReceiver广播接收器,ContentProvide内容提供器 . Activity: Activity是应用程序 ...
- Windows8 正式版最简单的去除桌面水印方法
方法一: 优点:无需替换文件,无需任何工具,对系统没有副作用缺点:更换主题或者壁纸之后水印再现方法:按住 “win键+P” 进入 “第二屏幕 ”选择 “扩展”再按住 “win键+P” 进入 “第二屏幕 ...
- iOS更改ShareSDK默认的分享功能界面
ShareSDK的集成这里就不详细介绍了, 官网的都已经够详细了.. 官方的默认分享样式如下: 贴上我的源代码: // 创建分享图片 NSString *imageURLString = @" ...
- java rmi 使用方法
server package Server; import java.rmi.Naming; import java.rmi.RMISecurityManager; import java.rmi.r ...
- Ubuntu最小化桌面快捷键Super+D不生效解决
之前用的Debian,最近研发老大让统一使用Ubuntu来开发,安装了Ubuntu 15.10之后,设置了最小化桌面的快捷键为Super+D(在Systm Settings/系统设置—>Keyb ...
- HTML5 canvas 合成属性
合成属性 globalAlpha 设置或返回绘图的当前 alpha 或透明值 globalCompositeOperation ...