Description

在一个二维平面上有若干个矩形。定义一个矩形的(或有边在无限远处)区域为符合条件的条件为:

  • 这个区域仅包含一个矩形,且不能使边界穿过任何一个矩形的内部。
  • 这个区域可以用一个水平或竖直的直线分割为两个符合条件的区域。

现给定一个有 \(n\) 个矩形的平面,请你判断整个平面区域是否符合条件。

Hint

  • for all: \(1\le n\le 10^5\)

    • for Easy: \(n\le 10^3\)
  • \(0\le \text{坐标大小} \le 10^9\)

Solution

Easy Version

对于小规模的数据,我们直接按题意分治即可。

对于一组矩形,我们可以先找一条分割线,分为两组矩形然后递归处理。

如何找分割线?不难想到按 \(x,y\) 坐标分别直接排序。

这个做法复杂度 \(O(n^2 \log n)\),足以通过 Easy 数据。

Code(Easy)

/*
* Author : _Wallace_
* Source : https://www.cnblogs.com/-Wallace-/
* Problem : Codeforces 1181E1 A Story of One Country (Easy)
*/
#include <iostream>
#include <algorithm>
#include <vector> using namespace std;
const int N = 1e5 + 5; struct area {
int u, d, l, r;
} ar[N];
typedef vector<area> areaList;
int n; bool cmp_x(const area& x, const area& y) {
return x.l < y.l;
}
bool cmp_y(const area& x, const area& y) {
return x.u < y.u;
} bool solve(areaList ar) {
if (ar.size() == 1) return true; sort(ar.begin(), ar.end(), cmp_x);
int maxR = ar.begin()->r;
for (register int i = 1; i < ar.size(); i++)
if (maxR <= ar[i].l)
return solve(areaList(ar.begin(), ar.begin() + i))
&& solve(areaList(ar.begin() + i, ar.end()));
else maxR = max(maxR, ar[i].r); sort(ar.begin(), ar.end(), cmp_y);
int maxD = ar.begin()->d;
for (register int i = 1; i < ar.size(); i++)
if (maxD <= ar[i].u)
return solve(areaList(ar.begin(), ar.begin() + i))
&& solve(areaList(ar.begin() + i, ar.end()));
else maxD = max(maxD, ar[i].d); return false;
} signed main() {
cin >> n;
areaList dat;
for (register int i = 1; i <= n; i++) {
area ar;
cin >> ar.l >> ar.u >> ar.r >> ar.d;
dat.push_back(ar);
} if (solve(dat)) cout << "YES" << endl;
else cout << "NO" << endl;
}

Hard

上面的算法之所以效率不高,很大原因是由于递归内部的排序。

因此不妨直接维护矩形的有序——set

这里维护两个 set,分别按 \(x, y\) 坐标排序。

假如找到了一条分割线,那么我们将这部分的矩形导出转移至两个新的 set 中,递归分治处理。

但假如分割线在非常后面,这就导致导出矩形的时间开销非常大。

于是我们使用 启发式分裂 的思想:当分割线在非常后面,虽然前面元素非常多,但后面元素却很少。使用为什么不导出后面,保留前面呢?

假如我们总是这样做,那么导出部分的效率就可以得到保证。


现在又有一个棘手的问题——怎么找分割线?

假如直接扫 set 找,最坏还得扫过整个 set,复杂度又退化到了平方级别。

于是我们有想到 Non-boring sequences 中的 中途相遇法

那个是一维意义上的中途相遇,而这里则是 二维平面上的中途相遇

具体怎么做?题目不是给我们每个矩形的四个参数吗?于是我们根据 4 个方向,一个开 4 个 set。

并且我们要求 4 个方向同时向中间推进。

当其中一个方向找到了分割线,那么就 直接开始导出。由于这里可以导出的矩形个数一定不超过整个 set 的一半,于是不需要判断两边的个数多少,自然就保证了启发式分裂的实施。

时间复杂度为 \(T(n) = T(x) + T(n - x) + O(x\log n)\) ,其中 \(x\) 为导出的矩形的个数。

当 \(x = \frac{n}{2}\) 时达到最劣情况,为 \(O(n\log^2 n)\)。

Code(Hard)

/*
* Author : _Wallace_
* Source : https://www.cnblogs.com/-Wallace-/
* Problem : Codeforces 1181E2 A Story of One Country (Hard)
*/
#include <iostream>
#include <algorithm>
#include <set>
#include <vector> using namespace std;
const int N = 1e5 + 5;
const int MaxU = 1e9; struct area {
int l, r, u, d;
};
typedef vector<area> areaList;
int n; struct cmp_l {
inline bool operator () (const area& a, const area& b) {
return a.l != b.l ? a.l < b.l : a.u < b.u;
}
};
struct cmp_r {
inline bool operator () (const area& a, const area& b) {
return a.r != b.r ? a.r > b.r : a.d > b.d;
}
};
struct cmp_u {
inline bool operator () (const area& a, const area& b) {
return a.u != b.u ? a.u < b.u : a.l < b.l;
}
};
struct cmp_d {
inline bool operator () (const area& a, const area& b) {
return a.d != b.d ? a.d > b.d : a.r > b.r;
}
};
typedef set<area, cmp_l> setL;
typedef set<area, cmp_r> setR;
typedef set<area, cmp_u> setU;
typedef set<area, cmp_d> setD; bool solve(setL& sl, setR& sr, setU& su, setD& sd) {
int size = sl.size();
if (size == 1) return true; setL pl; setR pr;
setU pu; setD pd; setL::iterator itl = sl.begin();
setR::iterator itr = sr.begin();
setU::iterator itu = su.begin();
setD::iterator itd = sd.begin(); int maxR = itl->r, maxD = itu->d;
int minL = itr->l, minU = itd->u; while (--size) {
++itl;
if (maxR <= itl->l) {
for (setL::iterator j = sl.begin(); j != itl; j++)
pl.insert(*j), pr.insert(*j), pu.insert(*j), pd.insert(*j);
for (setL::iterator j = sl.begin(); j != itl; j++)
sr.erase(*j), su.erase(*j), sd.erase(*j);
sl.erase(sl.begin(), itl);
return solve(pl, pr, pu, pd) && solve(sl, sr, su, sd);
} else {
maxR = max(maxR, itl->r);
} ++itr;
if (minL >= itr->r) {
for (setR::iterator j = sr.begin(); j != itr; j++)
pl.insert(*j), pr.insert(*j), pu.insert(*j), pd.insert(*j);
for (setR::iterator j = sr.begin(); j != itr; j++)
sl.erase(*j), su.erase(*j), sd.erase(*j);
sr.erase(sr.begin(), itr);
return solve(pl, pr, pu, pd) && solve(sl, sr, su, sd);
} else {
minL = min(minL, itr->l);
} ++itu;
if (maxD <= itu->u) {
for (setU::iterator j = su.begin(); j != itu; j++)
pl.insert(*j), pr.insert(*j), pu.insert(*j), pd.insert(*j);
for (setU::iterator j = su.begin(); j != itu; j++)
sl.erase(*j), sr.erase(*j), sd.erase(*j);
su.erase(su.begin(), itu);
return solve(pl, pr, pu, pd) && solve(sl, sr, su, sd);
} else {
maxD = max(maxD, itu->d);
} ++itd;
if (minU >= itd->d) {
for (setD::iterator j = sd.begin(); j != itd; j++)
pl.insert(*j), pr.insert(*j), pu.insert(*j), pd.insert(*j);
for (setD::iterator j = sd.begin(); j != itd; j++)
sl.erase(*j), sr.erase(*j), su.erase(*j);
sd.erase(sd.begin(), itd);
return solve(pl, pr, pu, pd) && solve(sl, sr, su, sd);
} else {
minU = min(minU, itd->u);
}
} return false;
} signed main() {
cin >> n;
areaList dat;
for (register int i = 1; i <= n; i++) {
area ar;
cin >> ar.l >> ar.u >> ar.r >> ar.d;
dat.push_back(ar);
} sort(dat.begin(), dat.begin(), cmp_l());
setL sl(dat.begin(), dat.end()); sort(dat.begin(), dat.begin(), cmp_r());
setR sr(dat.begin(), dat.end()); sort(dat.begin(), dat.begin(), cmp_u());
setU su(dat.begin(), dat.end()); sort(dat.begin(), dat.begin(), cmp_d());
setD sd(dat.begin(), dat.end()); if (solve(sl, sr, su, sd)) cout << "YES" << endl;
else cout << "NO" << endl;
}

【Codeforces 1181E】A Story of One Country (Easy & Hard)(分治 & set)的更多相关文章

  1. Codeforces Round #622(Div 2) C1. Skyscrapers (easy version)

    题目链接: C1. Skyscrapers (easy version) 题目描述: 有一行数,使得整个序列满足 先递增在递减(或者只递增,或者只递减) ,每个位置上的数可以改变,但是最大不能超过原来 ...

  2. Codeforces - 1195D1 - Submarine in the Rybinsk Sea (easy edition) - 水题

    https://codeforc.es/contest/1195/problem/D1 给\(n\)个等长的十进制数串,定义操作\(f(x,y)\)的结果是"从\(y\)的末尾开始一个一个交 ...

  3. Codeforces Round #622 (Div. 2) C1. Skyscrapers (easy version)(简单版本暴力)

    This is an easier version of the problem. In this version n≤1000n≤1000 The outskirts of the capital ...

  4. Codeforces Global Round 7 D1. Prefix-Suffix Palindrome (Easy version)(字符串)

    题意: 取一字符串不相交的前缀和后缀(可为空)构成最长回文串. 思路: 先从两边取对称的前后缀,之后再取余下字符串较长的回文前缀或后缀. #include <bits/stdc++.h> ...

  5. Codeforces Round #570 (Div. 3) E. Subsequences (easy version) (搜索,STL)

    题意:有一长度为\(n\)的字符串,要求得到\(k\)不同的它的子序列(可以是空串),每个子序列有\(|n|-|t|\)的贡献,求合法情况下的最小贡献. 题解:直接撸个爆搜找出所有子序列然后放到set ...

  6. Codeforces Round #602 Div2 D1. Optimal Subsequences (Easy Version)

    题意:给你一个数组a,询问m次,每次返回长度为k的和最大的子序列(要求字典序最小)的pos位置上的数字. 题解:和最大的子序列很简单,排个序就行,但是题目要求字典序最小,那我们在刚开始的时候先记录每个 ...

  7. Codeforces Round #355 (Div. 2) D. Vanya and Treasure 分治暴力

    D. Vanya and Treasure 题目连接: http://www.codeforces.com/contest/677/problem/D Description Vanya is in ...

  8. Codeforces Round #256 (Div. 2) C. Painting Fence(分治贪心)

    题目链接:http://codeforces.com/problemset/problem/448/C C. Painting Fence time limit per test 1 second m ...

  9. Codeforces 161D Distance in Tree(树的点分治)

    题目大概是,给一棵树,统计距离为k的点对数. 不会DP啊..点分治的思路比较直观,啪啪啪敲完然后AC了.具体来说是这样的: 树上任何两点的路径都可以看成是一条过某棵子树根的路径,即任何一条路径都可以由 ...

随机推荐

  1. pandas.DataFarme内置的绘图功能参数说明

    可视化是数据探索性分析及结果表达的一种非常重要的形式,因此打算写一个python绘图系列,本文是第一篇,先说一下pandas.DataFrame.plot()绘图功能. pandas.DataFram ...

  2. linux之DNS服务

    1.DNS (Domain Name Service 域名解析) DNS是因特网上作为域名和IP地址相互映射的一个分布式数据库,能够使用户更方便的访问互联网而不需要记忆能够直接被机器识别的IP. BI ...

  3. brctl 增加桥接网卡

    前言 之前有一篇介绍配置桥接网卡的,这个桥接网卡一般是手动做虚拟化的时候会用到,通过修改网卡的配置文件的方式会改变环境的原有的配置,而很多情况,我只是简单的用一下,并且尽量不要把网络搞断了,万一有问题 ...

  4. Go原生和GoFrame的Cookie关于MaxAge区别

    Go原生和GoFrame的Cookie关于MaxAge区别 环境: gf v1.14.4 go 1.11 Go原生 type Cookie struct { Name string Value str ...

  5. kali 系列学习07-攻击之密码生成

    比较理想的字典是拖库字典,比如CSDN字典,如果要生成字典,可以使用Crunch 和 rtgen 两个工具, 一.密码生成 1.Crunch (1)启动crunch命令.执行命令如下所示. #crun ...

  6. xctf攻防世界——crackme writeup

    感谢xctf提供学习平台 https://adworld.xctf.org.cn crackme有壳,脱壳部分见文章: https://www.cnblogs.com/hongren/p/126332 ...

  7. webug第三关:你看到了什么?

    第三关:你看到了什么? 右键源码 扫描到test目录

  8. 刚安装好的MathType怎么使用

    对于刚接触公式编辑器的新手来说,难免会存在很多疑问:如何使用刚安装好的Word公式编辑器?安装好公式编辑器之后,我们在哪里找到这个工具呢?下面就针对大家的这些疑问,来给大家介绍下首次使用MathTyp ...

  9. 配置jdb

    目录 注:1)查看当前Linux系统是否已经安装java 1.把jdk文件的压缩包拖入虚拟机 2.找到刚刚拖拽的文件 3.在usr/local下创建jdk的文件夹 4.解压jdk的文件,并存放在刚刚创 ...

  10. 二:robot framework基本组成

    1.RF组成:套件.用例.关键字 套件:测试用例的集合,可以是一个模块的功能点的集合.也可以是很多模块功能点的集合 用例:一般是由多个关键字组成的 关键字:测试库.资源文件.用例所在文件的关键字表 2 ...