题目链接: P4999 烦人的数学作业

题目大意

详见题目

solution

有一个显而易见的结论

发现 \(ans_{l, r} = ans_{1. r} - ans_{1, l - 1}\)

那只需要处理 \(1 - r\) 的即可

设 \(f_{i, j}\) 表示长度为 \(i\) 最高位为 \(j\) 的和

\(f_{i, j} = \sum\limits_{k = 0}^{k \leqslant 9} f_{i - 1, k} + j * 10^{i - 1}\)

对于\(ans_{1, r}\) 我们可以采用以下策略 :

设 \(len\) 为 \(r\) 的位数, \(a_{len}\) 为 \(r\) 的每一位

  1. 对于所有长度小于 \(len\) 的 \(f\) , \(res += f_{i, j}, i \in [1, len - 1], j \in [1, 9]\)
  2. 对于长度等于 \(len\)且最高位小于 \(a_{len}\) 的 \(f\) , \(res += f_{len, j}, j \in [1, a_{len})\)
  3. 然后对于剩下的 \(len - 1\) 位, 我们继续执行 \(2\) 操作同时对之前已经操作过去的位数加和然后在往后操作时加上对应的次数的乘积, 不过 \(j\in [0, a_i)\) (因为最高位已经不为0了)

不过我们在处理时, 处理不到 \(r\)(其实是因为我不会)

那么答案就是 \(ans_{1, r + 1} - ans_{1, l}\)

那么状态转移就出来了,然后对结果进行分治即可

Code:

/**
* Author: Aliemo
* Data:
* Problem:
* Time: O()
*/
#include <cstdio>
#include <iostream>
#include <string>
#include <cstring>
#include <cmath>
#include <algorithm> #define int long long
#define rr register #define inf 1e9
#define MAXN 100010 using namespace std; const int mod = 1e9 + 7; inline int read() {
int s = 0, f = 0;
char ch = getchar();
while (!isdigit(ch)) f |= ch == '-', ch = getchar();
while (isdigit(ch)) s = s * 10 + (ch ^ 48), ch = getchar();
return f ? -s : s;
} void print(int x) {
if (x < 0) putchar('-'), x = -x;
if (x > 9) print(x / 10);
putchar(x % 10 + 48);
} int L, R, T, len, ans; int f[20][20], a[20]; inline int f_pow(int x, int y) {
int ans = 1;
while (y) {
if (y & 1) ans = (ans * x) % mod;
x = (x * x) % mod;
y >>= 1;
}
return ans % mod;
} inline void init() {
memset(f, 0, sizeof f);
for (rr int i = 0; i <= 9; i++) f[1][i] = i;
for (rr int i = 2; i <= 18; i++) {
for (rr int j = 0; j <= 9; j++) {
for (rr int k = 0; k <= 9; k++)
f[i][j] = (f[i][j] + f[i - 1][k]) % mod;
f[i][j] = (f[i][j] + j * f_pow(10, i - 1)) % mod;
// cout << f[i][j] << " ";
}
// cout << "\n";
}
} inline int solve(int x) {
memset(a, 0, sizeof a);
len = ans = 0;
int sum = 0;
while(x) {
a[++len] = x % 10;
x /= 10;
}
for (rr int i = 1; i < len; i++)
for (rr int j = 1; j <= 9; j++)
ans = (ans + f[i][j]) % mod;
for (rr int i = 1; i < a[len]; i++) ans = (ans + f[len][i]) % mod;
// cout << ans << "\n";
sum += a[len];
for (rr int i = len - 1; i >= 1; i--) {
for (rr int j = 0; j < a[i]; j++)
ans = (ans + f[i][j]) % mod;
ans = (ans + sum * a[i] * f_pow(10, i - 1) % mod) % mod;
sum += a[i];
}
return ans % mod;
} signed main() {
T = read();
init();
while (T--) {
L = read(), R = read();
cout << (solve(R + 1) - solve(L) + mod) % mod<< "\n";
}
}

洛谷 P4999的更多相关文章

  1. 洛谷 P4999(数位DP)

    ###洛谷 P4999 题目链接 ### 题目大意:给你一个区间,求这段区间中所有数的,数位上的,数字之和. 分析: 这题与 洛谷 P2602 相似,稍微改一下就可以了. 求出 0 ~ 9 的个数,然 ...

  2. [洛谷P4999]烦人的数学作业

    题目大意:定义$f(x)$表示$x$每一个数位(十进制)的数之和,求$\sum\limits_{i=l}^rf(i)$,多组询问. 题解:数位$DP$,可以求出每个数字的出现个数,再乘上每个数字的大小 ...

  3. 洛谷1640 bzoj1854游戏 匈牙利就是又短又快

    bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...

  4. 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.

    没有上司的舞会  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...

  5. 洛谷P1108 低价购买[DP | LIS方案数]

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  6. 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP

    题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...

  7. 洛谷P1710 地铁涨价

    P1710 地铁涨价 51通过 339提交 题目提供者洛谷OnlineJudge 标签O2优化云端评测2 难度提高+/省选- 提交  讨论  题解 最新讨论 求教:为什么只有40分 数组大小一定要开够 ...

  8. 洛谷P1371 NOI元丹

    P1371 NOI元丹 71通过 394提交 题目提供者洛谷OnlineJudge 标签云端评测 难度普及/提高- 提交  讨论  题解 最新讨论 我觉得不需要讨论O long long 不够 没有取 ...

  9. 洛谷P1538迎春舞会之数字舞蹈

    题目背景 HNSDFZ的同学们为了庆祝春节,准备排练一场舞会. 题目描述 在越来越讲究合作的时代,人们注意的更多的不是个人物的舞姿,而是集体的排列. 为了配合每年的倒计时,同学们决定排出——“数字舞蹈 ...

随机推荐

  1. eclipse 项目没错却有红叉(解决方法)

    eclipse如何去掉无用的validation.优化eclipse 注意:本经验使用的eclipse版本为 Eclipse Java EE IDE for Web Developers. Versi ...

  2. 一次失败的java Box居中尝试

    效果如下: 通过Box的应该虽然实现了居中,但是页面相当丑!且不能插入JTextField等文本框,总的来说相当失败!!! import javax.swing.Box; import javax.s ...

  3. MongoDb学习(五)--Gridfs--上传下载

    版本 <dependency> <groupId>org.springframework.data</groupId> <artifactId>spri ...

  4. 有关CSS 定位中的盒装模型、position、z-index的学习心得

    开始整体之前我需要说明两个概念: 第一个就是   一切皆为框  也就是说在HTML中的不管是是块级的还是内联的,都可以认为成块的,唯一的区别就是块的会独自占据一行 第二个文档流:  一个网页可以看作是 ...

  5. 敏捷史话(二):Scrum社区的悲剧性损失——Mike Beedle

    2018年3月23日,在美国的芝加哥发生了一起意外刺杀事件.一名男子刺杀了一位首席执行官,而这位不幸的首席执行官就是<敏捷宣言>的合著者--Mike Beedle.Mike 的这场意外令 ...

  6. i5 11300H 怎么样 相当于什么水平

    i5-11300H 为 4 核 8 线程,主频 3.1GHz,睿频 4.4GHz,三级缓存 8MBi5-11300H 怎么样看完你就知道了 https://list.jd.com/list.html?

  7. 写给小白看的Mysql事务

    1 为什么需要事务 在网上的很多资料里,其实没有很好的解释为什么我们需要事务.其实我们去学习一个东西之前,还是应该了解清楚这个东西为什么有用,硬生生的去记住事务的ACID特性.各种隔离级别个人认为没有 ...

  8. aix5.3安装httpd服务

    1.安装gcc(1)从IBM上下载 gcc-4.0.0-1.aix5.3.ppc.rpm gcc-cplusplus-4.0.0-1.aix5.3.ppc.rpm libgcc-4.0.0-1.aix ...

  9. 【老孟Flutter】为什么 build 方法放在 State 中而不是在 StatefulWidget 中

    老孟导读:此篇文章是生命周期相关文章的番外篇,在查看源码的过程中发现了这一有趣的问题,欢迎大家一起探讨. Flutter 中Stateful 组件的生命周期:http://laomengit.com/ ...

  10. idea中文注释出现乱码,我靠自己解决了

    如果你像我一样️,查遍google百度,半天下来还是找不到解决方案,说不定这篇博客能帮助你顺利解决呢 好了,那么开始说说我是怎么解决麻烦的. 首先,我想打开一份java文稿.光预览,它是没有任何问题的 ...