卷积神经网络CNN

结构

池化操作

手写数字-卷积神经网络实现

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
tf.compat.v1.disable_eager_execution()
import numpy as np #载入数据集
mnist=input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次大小
batch_size=100
#计算一共有多少个批次
n_bath=mnist.train.num_examples // batch_size #初始化权值
def weight_variable(shape):
initial=tf.compat.v1.truncated_normal(shape,stddev=0.1)#生成一个截断的正态分布
return tf.Variable(initial) #初始化偏置值
def bias_variable(shape):
initial=tf.compat.v1.constant(0.1,shape=shape)#生成一个截断的正态分布
return tf.Variable(initial) #卷积层
def conv2d(x,W):
#strides[0]=strides[3]=1,strides[1]代表x方向的步长,strides[2]代表y方向的步长
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME') #池化层
def max_pool_2x2(x):
#ksize[1,x,y,1]
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') #定义两个placeholder
x=tf.compat.v1.placeholder(tf.float32,[None,784])#28*28
y=tf.compat.v1.placeholder(tf.float32,[None,10]) #改变x的格式转为4D的向量【batch,in_height,in_width,in_channels】
x_image=tf.compat.v1.reshape(x,[-1,28,28,1]) #初始化第一个卷积层的权值和偏置
W_conv1=weight_variable([5,5,1,32])#5*5的采样窗口,32个卷积核从1个平面抽取特征
b_conv1=bias_variable([32])#每一个卷积核一个偏置值 #把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
h_conv1=tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)
h_pool1=max_pool_2x2(h_conv1)#进行max-pooling #初始化第二个卷积层的权值和偏置
W_conv2=weight_variable([5,5,32,64])#5*5的采样窗口,64个卷积核从32个平面抽取特征
b_conv2=bias_variable([64])#每一个卷积核一个偏置值 #把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
h_conv2=tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)
h_pool2=max_pool_2x2(h_conv2)#进行max-pooling #28*28的图片第一次卷积后还是28*28(步长为1),第一次池化变为14*14(因为步长2)
#第二次卷积后为14*14,第二次池化为7*7
#经过以上步骤后得到64张7*7平面 #初始化第一个全连接层的权值
W_fc1=weight_variable([7*7*64,1024])#上一层有7*7*64个神经元,全连接层有1024个神经元
b_fc1=bias_variable([1024])#1024个节点 #把池化层的第二层输出扁平化为1维
h_pool2_flat=tf.compat.v1.reshape(h_pool2,[-1,7*7*64])
#求第一个全连接层的输出
h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1) #用keep_prob来表示神经元的输出概率
# keep_prob=tf.compat.v1.placeholder(tf.float32)
# h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob) #初始化第二个全连接层的权值
W_fc2=weight_variable([1024,10])#上一层有7*7*64个神经元,全连接层有1024个神经元
b_fc2=bias_variable([10])#1024个节点 #计算输出
prediction=tf.nn.softmax(tf.matmul(h_fc1,W_fc2)+b_fc2) #交叉熵函数
loss=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#梯度下降
train_step=tf.compat.v1.train.AdamOptimizer(1e-4).minimize(loss) #初始化变量
init=tf.compat.v1.global_variables_initializer() #结果存放在一个布尔型列表中
#返回的是一系列的True或False argmax返回一维张量中最大的值所在的位置,对比两个最大位置是否一致
correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(prediction,1)) #求准确率
#cast:将布尔类型转换为float,将True为1.0,False为0,然后求平均值
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) with tf.compat.v1.Session() as sess:
sess.run(init)
for epoch in range(51):
for batch in range(n_bath):
#获得一批次的数据,batch_xs为图片,batch_ys为图片标签
batch_xs,batch_ys=mnist.train.next_batch(batch_size)
#进行训练
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys}) test_acc=sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}) print("Iter "+str(epoch)+",Testing Accuracy "+str(test_acc))

输出结果:

跑的时间有点长。。。。。

Tensorflow-卷积神经网络CNN的更多相关文章

  1. 深度学习之卷积神经网络CNN及tensorflow代码实例

    深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分.级数,所以看起来觉得很复杂 ...

  2. 深度学习之卷积神经网络CNN及tensorflow代码实现示例

    深度学习之卷积神经网络CNN及tensorflow代码实现示例 2017年05月01日 13:28:21 cxmscb 阅读数 151413更多 分类专栏: 机器学习 深度学习 机器学习   版权声明 ...

  3. 卷积神经网络CNN原理以及TensorFlow实现

    在知乎上看到一段介绍卷积神经网络的文章,感觉讲的特别直观明了,我整理了一下.首先介绍原理部分. [透析] 卷积神经网络CNN究竟是怎样一步一步工作的? 通过一个图像分类问题介绍卷积神经网络是如何工作的 ...

  4. TensorFlow 2.0 深度学习实战 —— 浅谈卷积神经网络 CNN

    前言 上一章为大家介绍过深度学习的基础和多层感知机 MLP 的应用,本章开始将深入讲解卷积神经网络的实用场景.卷积神经网络 CNN(Convolutional Neural Networks,Conv ...

  5. 卷积神经网络CNN总结

    从神经网络到卷积神经网络(CNN)我们知道神经网络的结构是这样的: 那卷积神经网络跟它是什么关系呢?其实卷积神经网络依旧是层级网络,只是层的功能和形式做了变化,可以说是传统神经网络的一个改进.比如下图 ...

  6. 深度学习之卷积神经网络(CNN)详解与代码实现(二)

    用Tensorflow实现卷积神经网络(CNN) 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10737065. ...

  7. 深度学习之卷积神经网络(CNN)详解与代码实现(一)

    卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目 ...

  8. Tensorflow卷积神经网络[转]

    Tensorflow卷积神经网络 卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络, 在计算机视觉等领域被广泛应用. 本文将简单介绍其原理并分析Te ...

  9. 深度学习之卷积神经网络CNN

    转自:https://blog.csdn.net/cxmscb/article/details/71023576 一.CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连 ...

  10. 基于MNIST数据的卷积神经网络CNN

    基于tensorflow使用CNN识别MNIST 参数数量:第一个卷积层5x5x1x32=800个参数,第二个卷积层5x5x32x64=51200个参数,第三个全连接层7x7x64x1024=3211 ...

随机推荐

  1. 学习 Gin 问题总结 2020.12.29

    学习 Gin 问题总结 2020.12.29 数据绑定与解析 BindXXX,ShouldBindXXX和ShouldBindWith区别 BindXXX 会自动返回信息,输入无效时,在header写 ...

  2. 7. JDK拍了拍你:字符串拼接一定记得用MessageFormat#format

    目录 ✍前言 版本约定 ✍正文 DateFormat:日期时间格式化 SimpleDateFormat NumberFormat:数字格式化 DecimalFormat 一.0和#的使用(最常见使用场 ...

  3. SpringBoot+Vue 前后端合并部署

    前后端分离开发项目 前端vue项目 服务端springboot项目 如何将vue的静态资源整合到springboot项目里,通过启动jar包的方式部署服务. 前端项目执行npm run build 命 ...

  4. node-sass 安装失败报错的原因及解决办法(整理)

    npm install 时偶尔遇到报错:没有安装python或node-sass 安装失败的问题,百度之后发现是被墙了,但根据百度的方法换了淘宝镜像和用了vpn都安装失败,最后发现原来是因为没有卸载之 ...

  5. 再看C语言-算法

    通常一个程序包括算法.数据结构.程序设计方法及语言工具和环境这四个方面.其中算法是核心,算法就是解决"做什么"和"如何做"的问题.算法是程序的灵魂,项目中如果接 ...

  6. python 文章集合

    Python profiling tools 我常用的 Python 调试工具

  7. Linux下Oracle19c离线rpm安装

    一.基础环境配置 1.关闭系统防火墙 systemctl stop firewalld syustemctl disable firewalld 2.关闭selinux vim /etc/selinu ...

  8. centos7搭建sonarqube环境+jenkins部署全流程

    一.简介sonarqube是一个用于代码质量管理的开源平台,用于管理源代码的质量 不遵循代码标准sonar可以通过PMD,CheckStyle,Findbugs等等代码规则检测工具规范代码编写.潜在的 ...

  9. 织梦dedecms自增变量autoindex标签的使用(转)

    织梦dedecms自增变量autoindex标签的使用 例1: {dede:arclist titlelen='120' row='8' typeid='2'}         <li clas ...

  10. 基于腾讯云存储COS的ClickHouse数据冷热分层方案

    一.ClickHouse简介 ClickHouse是一个用于联机分析(OLAP)的列式数据库管理系统(DBMS),支持PB级数据量的交互式分析,ClickHouse最初是为YandexMetrica ...