早上考的,我打了80分的部分分,出来和同学讨论的时候真想扇自己一巴掌。。。。。。

题目描述:

  

  给定 n 个同心的扇形,求有多少面积,被至少k 个扇形所覆盖。

输入输出格式

输入格式:

第一行是三个整数 n,m,k。n 代表同心扇形个数,m代表将(−π ,π ]的角度区间平均分成2m 份。

从第二行开始的 n 行,每行三个整数r,a1,a2。描述了一个圆心在原点的扇形,半径为r,圆心角是从弧度π*a1/mπ∗a1/m到π*a2/mπ∗a2/m(a1 不一定小于 a2)。

  输出格式:

      输出一个整数 ans ,π/2m*ansπ/2m∗ans等于至少k 个扇形所覆盖的总面积。数据保证答案在2^{63} - 1263−1范围内。

思路分析:

嗯,好,让我们先来看看部分分做法。

30分:

  大暴力,就不讲了吧。

60分:

  差分,因为所有半径都是一样的,所以我们只需要求出所有被覆盖过大于等于k次的段就可以了。

80分:

  写一棵权值线段树,在顺便用一下差分思想(在起始的地方把半径加入权值线段树,在终止的时候把半径的地方-1就好了,然后每次查找最大值)。

100分:

  嗯,在讲100分算法前先让我扇自己一巴掌。。。。。。

  其实你们在看80分算法的时候应该心里都在嘀咕:这不是把求最大改成求第k大不就是正解了嘛?嗯,没错,就是这样。

  我考场脑抽了竟然没想到,啊啊啊啊啊啊啊啊啊啊啊啊!!!!!!!!!!!!!!!!!!!

代码实现:

var
next_insert,val_insert,next_delete,val_delete:array[1..4000000]of longint;
head_insert,head_delete:array[-1000000..1000000]of longint;
cnt:array[-1000000..1000000]of longint;
a:array[1..2000000]of longint;
tot,tot_insert,tot_delete,v:longint;
ans,x,y,n,m,need,s,t,r:int64;
i,j:longint;
procedure add_insert(x,v:longint);
begin
inc(tot_insert);
next_insert[tot_insert]:=head_insert[x];
head_insert[x]:=tot_insert;
val_insert[tot_insert]:=v;
end;
procedure add_delete(x,v:longint);
begin
inc(tot_delete);
next_delete[tot_delete]:=head_delete[x];
head_delete[x]:=tot_delete;
val_delete[tot_delete]:=v;
end;
procedure add(s,t,r:int64);
begin
if s=t then exit;
inc(cnt[s]); add_insert(s,r);
dec(cnt[t]); add_delete(t,r);
end;
procedure update(k,l,r,x,z:longint);
var
mid:longint;
begin
a[k]:=a[k]+z;
if l=r then exit;
mid:=(l+r)>>1;
if x<=mid then update(k*2,l,mid,x,z) else update(k*2+1,mid+1,r,x,z);
end;
function query(k,l,r,need:longint):longint;
var
mid:longint;
begin
if l=r then exit(l);
mid:=(l+r)>>1;
if a[k*2+1]>=need then exit(query(k*2+1,mid+1,r,need))
else exit(query(k*2,l,mid,need-a[k*2+1]));
end;
begin
read(n,m,need);
for i:=1 to n do
begin
read(r,s,t);  
        //是不是觉得这个读入处理很恶心,嗯,我也这么觉得。。。。。。(当我看到a1不一定小于a2时,我真想提着西瓜刀去找出题人拼命)
if (s>=0)and(t>=0) then
begin
if s<t then add(s,t,r)
else
begin
add(s,m,r);
add(-m,0,r);
add(0,t,r);
end;
end else
if (s<0)and(t<0) then
begin
if s<t then add(s,t,r)
else
begin
add(-m,t,r);
add(0,m,r);
add(s,0,r);
end;
end else
if (s>=0)and(t<0) then
begin
add(s,m,r);
add(-m,t,r);
end else
if (s<0)and(t>=0) then
begin
add(0,t,r);
add(s,0,r);
end;
end;
for i:=-m to m-1 do
begin
j:=head_insert[i];
while j>0 do
begin
v:=val_insert[j];
update(1,0,100000,v,1);
j:=next_insert[j];
end;
j:=head_delete[i];
while j>0 do
begin
v:=val_delete[j];
update(1,0,100000,v,-1);
j:=next_delete[j];
end;
x:=x+cnt[i];
if x>=need then
begin
y:=query(1,0,100000,need);
ans:=ans+sqr(y);
end;
end;
writeln(ans);
end.

SHOI 2013 【扇形面积并】的更多相关文章

  1. 【BZOJ4418】[Shoi2013]扇形面积并 扫描线+线段树

    [BZOJ4418][Shoi2013]扇形面积并 Description 给定N个同心的扇形,求有多少面积,被至少K个扇形所覆盖. Input 第一行是三个整数n,m,k.n代表同心扇形的个数,m用 ...

  2. 4418: [Shoi2013]扇形面积并|二分答案|树状数组

    为何感觉SHOI的题好水. ..又是一道SB题 从左到右枚举每个区间,遇到一个扇形的左区间就+1.遇到右区间就-1,然后再树状数组上2分答案,还是不会码log的.. SHOI2013似乎另一道题发牌也 ...

  3. SHOI2013 扇形面积并

    题目链接:戳我 补一张图 我们尝试把圆上的扇形转化成直线上的矩形--我们维护[1,2*m]的区间,那么每个能产生贡献的子区间的长度*第K大的半径的平方的总和就是answer了. 怎么转化呢?左端点为a ...

  4. bzoj4418 [Shoi2013]扇形面积并

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4418 [题解] 被题目名称吓死系列. 用一棵线段树维护当前有哪些半径. 那么将扇形差分,每段 ...

  5. [SHOI 2013] 发微博

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=4419 [算法] 用std :: set维护每个人的好友集合 当两人成为好友时将每人接 ...

  6. 求两圆相交部分面积(C++)

    已知两圆圆心坐标和半径,求相交部分面积: #include <iostream> using namespace std; #include<cmath> #include&l ...

  7. POJ 2986 A Triangle and a Circle 圆与三角形的公共面积

    计算几何模板 #include<stdio.h> #include<string.h> #include<stdlib.h> #include<math.h& ...

  8. hdu 4762 && 2013 ACM/ICPC 长春网络赛解题报告

    这次的答案是猜出来的,如果做得话应该是应该是一个几何概型的数学题: 答案就是:n/(m^(n-1)); 具体的证明过程: 1.首先枚举这M个点中的的两个端点,概率是:n*(n-1); 2.假设这个蛋糕 ...

  9. Wannafly挑战赛25 B.面积并

    链接 [https://www.nowcoder.com/acm/contest/197/B] 分析 特殊优先考虑 首先考虑r>=l这种情况就是圆的面积了 第二就是r<=内切圆的半径,这个 ...

随机推荐

  1. 在C++/CLI环境下,千万不要把普通全局函数当标准C/C++的函数指针传递给native的库使用

    先上一个简单代码: #include <cstdlib> #include <cstdio> // native apis extern "C" { typ ...

  2. linux安装dubbo与zookeeper(一)

    所需工具: jdk1_7.tar.gz dubbo-admin-2.5.4.war(此文件不需解压) zookeeper.tar.gz tomcat7.0.tar.gz 以上文件下载需根据自己的电脑系 ...

  3. Agumaster 改善了pagination

    页面越来越完善了.

  4. JVM性能调优(1) —— JVM内存模型和类加载运行机制

    一.JVM内存模型 运行一个 Java 应用程序,必须要先安装 JDK 或者 JRE 包.因为 Java 应用在编译后会变成字节码,通过字节码运行在 JVM 中,而 JVM 是 JRE 的核心组成部分 ...

  5. SQL用于更新ID为顺序ID(用于删除了几条数据导致id不连续)

    UPDATE tab1022zhm SET ID =FROM (SELECT ROW_NUMBER() OVER (ORDER BY id) ROW,comName FROM dbo.tab1022z ...

  6. Django 中 a href标签 使用方法 跳转页面(Django四)

    上次我已经用Django启动了一个登录模板页面 具体过程见:Django启动我的第一个模板页面 但问题是我们只能通过监听的端口访问这一个页面,不能通过页面的一些连接跳转到其他页面如下,我们不能点击注册 ...

  7. [LeetCode]面试题53 - I. 在排序数组中查找数字 I(二分);面试题53 - II. 0~n-1中缺失的数字(二分)

    ##面试题53 - I. 在排序数组中查找数字 I ###题目 统计一个数字在排序数组中出现的次数. 示例 1: 输入: nums = [5,7,7,8,8,10], target = 8 输出: 2 ...

  8. Docker实战(3):Tomcat部署

    运行环境:centos7,Docker version 1.13.1,docker tomcat version 8.5.50 创建文件(为映射文件做准备,非固定) mkdir -p /tomcat/ ...

  9. doeker部署zabbix

    docker部署zabbix   我相信大家都已经会再物理机上跑zabbix并且监控了,那么有没有想过在docker中跑zabbix?下面咱们来看看如何在docker中搭建zabbix并且监控 部署环 ...

  10. Linux常用命令详解(2)

    aliasunaliasunamesuhostnamehistorywhichwcwwhowhoamipingkillseqdudffreedate 命令详解 1. alias 设置.’查看别名 实例 ...