LiberOJ #124. 除数函数求和 【整除分块】
一、题目
二、分析
比较好的一题,首先我们要对题目和样例进行分析,明白题目的意思。
由于对于每一个$d$,它所能整除的数其实都是定的,且数量是$ \lfloor \frac{n}{d} \rfloor $ 最终推导出这个公式 $$ ans = \sum_{d=1}^{n} \lfloor \frac{n}{d} \rfloor d^{k}$$
对于$n <= 10^{7}$其实复杂度是可以接受的。但是对于求$d^{k}$这个复杂度如果直接用快速幂预处理肯定会T。
所以,这里用到了一个比较巧妙的方法,即联系线性求欧拉函数,因为幂次方是可以直接相乘的,所以把每个数相当于拆成了素数的$k$次方,这样我们原先求$n$次的快速幂,现在只需要求$\sqrt{n}$次快速幂,即所有素数求一次。然后线性筛一遍就可以了。
三、AC代码
1 #include <bits/stdc++.h>
2
3 using namespace std;
4 #define ll long long
5 const int mod = 1e9 + 7;
6 const int maxn = 1e7 + 13;
7 int Sum[maxn], Prime[maxn], tot;
8 bool isPrime[maxn];
9 int n, k;
10
11 int Pow(int a, int b)
12 {
13 int ans = 1;
14 while(b)
15 {
16 if(b & 1)
17 {
18 ans = 1ll * ans * a % mod;
19 }
20 b >>= 1;
21 a = 1ll * a * a % mod;
22 }
23 return ans;
24 }
25
26 void init()
27 {
28 tot = 0;
29 memset(isPrime, 0, sizeof(isPrime));
30 isPrime[0] = isPrime[1] = 1;
31 Sum[1] = 1;
32 for(int i = 2; i < maxn; i++)
33 {
34 if(!isPrime[i])
35 {
36 Prime[tot++] = i;
37 Sum[i] = Pow(i, k);
38 }
39 for(int j = 0; j < tot && 1ll * Prime[j] * i < maxn; j++)
40 {
41 isPrime[i * Prime[j]] = 1;
42 Sum[i * Prime[j]] = 1ll * Sum[i] * Sum[Prime[j]] % mod;
43 if(i % Prime[j])
44 break;
45 }
46 }
47 }
48
49 int main()
50 {
51 int ans = 0;
52 cin >> n >> k;
53 init();
54 for(int i = 1; i <= n; i++)
55 {
56 int t = n / i;
57 ans = (ans + 1ll * t * Sum[i] % mod) % mod;
58 }
59 cout << ans << endl;
60 return 0;
61 }
LiberOJ #124. 除数函数求和 【整除分块】的更多相关文章
- P2261 [CQOI2007]余数求和[整除分块]
题目大意 给出正整数 n 和 k 计算 \(G(n, k)=k\ \bmod\ 1 + k\ \bmod\ 2 + k\ \bmod\ 3 + \cdots + k\ \bmod\ n\) 的值 其中 ...
- [CQOI2007] 余数求和 - 整除分块
\(\sum_{i=1}^n\;k\;mod\;i\) Solution \(\sum_{i=1}^n\;k\;mod\;i\\=\sum_{i=1}^n(k-i\lfloor{\frac{k}{i} ...
- LOJ #124. 除数函数求和 1
题目描述 $\sigma_k(n) = \sum_{d | n} d ^ k$ 求 $\sum_{i=1}^n\sigma_k(i)$ 的值对 109 取模的结果. 输入格式 第一行两个正整数 n, ...
- Loj #124. 除数函数求和
链接:https://loj.ac/problem/124 就是筛一下积性函数. #include<bits/stdc++.h> #define ll long long #define ...
- 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)
上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...
- luogu2261余数求和题解--整除分块
题目链接 https://www.luogu.org/problemnew/show/P2261 分析 显然\(k\) \(mod\) \(i=k-\lfloor {k/i}\rfloor\) \(\ ...
- P2261 [CQOI2007]余数求和 【整除分块】
一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$ ...
- 2018.07.17 CQOI2017 余数求和(整除分块)
洛谷传送门 bzoj传送门 这道题要用到学习莫比乌斯反演时掌握的整除分块算法,也就是对于一个数n" role="presentation" style="pos ...
- 洛谷 P2261 [CQOI2007]余数求和 ||整除(数论)分块
参考:题解 令f(i)=k%i,[p]表示不大于p的最大整数f(i)=k%i=k-[k/i]*i令q=[k/i]f(i)=k-qi如果k/(i+1)=k/i=qf(i+1)=k-q(i+1)=k-qi ...
随机推荐
- c# 类(2)
构造函数 和 析构函数 Constructors and destructors 构造函数是一个特殊的函数,当实例化一个类的时候自动调用这个函数,无返回值(不用定义返回类型)普通函数的定义 publi ...
- bzoj5312 冒险(吉司机线段树)题解
题意: 已知\(n\)个数字,进行以下操作: \(1.\)区间\([L,R]\) 按位与\(x\) \(2.\)区间\([L,R]\) 按位或\(x\) \(3.\)区间\([L,R]\) 询问最大值 ...
- confirm() :带有指定消息和 OK 及取消按钮的对话框
定义和用法 confirm() 方法用于显示一个带有指定消息和 OK 及取消按钮的对话框. 语法 confirm(message) 参数描述 message 要在 window 上弹出的对话框中显示的 ...
- Qt开发Activex笔记(二):Qt调用Qt开发的Activex控件
若该文为原创文章,转载请注明原文出处本文章博客地址:https://blog.csdn.net/qq21497936/article/details/113789693 长期持续带来更多项目与技术分享 ...
- 召回 & 召回算法
召回 & 召回算法 recall https://developers.google.com/machine-learning/crash-course/classification/prec ...
- Event Bus & Event Emitter
Event Bus & Event Emitter Event Bus https://code.luasoftware.com/tutorials/vuejs/parent-call-chi ...
- 聊聊ASP.NET Core中的配置
作为软件开发人员,我们当然喜欢一些可配置选项,尤其是当它允许我们改变应用程序的行为而无需修改或编译我们的应用程序时.无论你是使用新的还是旧的.NET时,可能希望利用json文件的配置.在这篇文章中, ...
- 开源OA办公平台搭建教程:O2OA+Arduino实现物联网应用(一)
O2OA平台是一个企业办公类系统的低代码开发平台,更够方便的开发和部署协同办公.流程管理等应用,但它能做的远不止这些,今天这个案例就为大家介绍一下,O2OA可以做的更多. 最近对养鱼产生了浓厚的兴趣, ...
- AForge实现拍照
记得先引用DLL private FilterInfoCollection videoDevices; private VideoCaptureDevice videoSource; BLL.AWBL ...
- 不同浏览器CSS样式不兼容问题
一句话,我想的太复杂了.向朋友请教才了解到,其实只要加个判断即可,首先获取到浏览器的基本信息,像什么版本啊,名称啊.默认语言啊等等,然后根据不同浏览器默认加载不同CSS样式即可,获取浏览器版本的连接如 ...