一、题目

  #124. 除数函数求和

二、分析

  比较好的一题,首先我们要对题目和样例进行分析,明白题目的意思。

  由于对于每一个$d$,它所能整除的数其实都是定的,且数量是$ \lfloor \frac{n}{d} \rfloor $ 最终推导出这个公式 $$  ans =   \sum_{d=1}^{n} \lfloor \frac{n}{d} \rfloor d^{k}$$

  对于$n <= 10^{7}$其实复杂度是可以接受的。但是对于求$d^{k}$这个复杂度如果直接用快速幂预处理肯定会T。

  所以,这里用到了一个比较巧妙的方法,即联系线性求欧拉函数,因为幂次方是可以直接相乘的,所以把每个数相当于拆成了素数的$k$次方,这样我们原先求$n$次的快速幂,现在只需要求$\sqrt{n}$次快速幂,即所有素数求一次。然后线性筛一遍就可以了。

三、AC代码

 1 #include <bits/stdc++.h>
2
3 using namespace std;
4 #define ll long long
5 const int mod = 1e9 + 7;
6 const int maxn = 1e7 + 13;
7 int Sum[maxn], Prime[maxn], tot;
8 bool isPrime[maxn];
9 int n, k;
10
11 int Pow(int a, int b)
12 {
13 int ans = 1;
14 while(b)
15 {
16 if(b & 1)
17 {
18 ans = 1ll * ans * a % mod;
19 }
20 b >>= 1;
21 a = 1ll * a * a % mod;
22 }
23 return ans;
24 }
25
26 void init()
27 {
28 tot = 0;
29 memset(isPrime, 0, sizeof(isPrime));
30 isPrime[0] = isPrime[1] = 1;
31 Sum[1] = 1;
32 for(int i = 2; i < maxn; i++)
33 {
34 if(!isPrime[i])
35 {
36 Prime[tot++] = i;
37 Sum[i] = Pow(i, k);
38 }
39 for(int j = 0; j < tot && 1ll * Prime[j] * i < maxn; j++)
40 {
41 isPrime[i * Prime[j]] = 1;
42 Sum[i * Prime[j]] = 1ll * Sum[i] * Sum[Prime[j]] % mod;
43 if(i % Prime[j])
44 break;
45 }
46 }
47 }
48
49 int main()
50 {
51 int ans = 0;
52 cin >> n >> k;
53 init();
54 for(int i = 1; i <= n; i++)
55 {
56 int t = n / i;
57 ans = (ans + 1ll * t * Sum[i] % mod) % mod;
58 }
59 cout << ans << endl;
60 return 0;
61 }

LiberOJ #124. 除数函数求和 【整除分块】的更多相关文章

  1. P2261 [CQOI2007]余数求和[整除分块]

    题目大意 给出正整数 n 和 k 计算 \(G(n, k)=k\ \bmod\ 1 + k\ \bmod\ 2 + k\ \bmod\ 3 + \cdots + k\ \bmod\ n\) 的值 其中 ...

  2. [CQOI2007] 余数求和 - 整除分块

    \(\sum_{i=1}^n\;k\;mod\;i\) Solution \(\sum_{i=1}^n\;k\;mod\;i\\=\sum_{i=1}^n(k-i\lfloor{\frac{k}{i} ...

  3. LOJ #124. 除数函数求和 1

    题目描述 $\sigma_k(n) = \sum_{d | n} d ^ k$​ 求 $\sum_{i=1}^n\sigma_k(i)$ 的值对 109 取模的结果. 输入格式 第一行两个正整数 n, ...

  4. Loj #124. 除数函数求和

    链接:https://loj.ac/problem/124 就是筛一下积性函数. #include<bits/stdc++.h> #define ll long long #define ...

  5. 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)

    上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...

  6. luogu2261余数求和题解--整除分块

    题目链接 https://www.luogu.org/problemnew/show/P2261 分析 显然\(k\) \(mod\) \(i=k-\lfloor {k/i}\rfloor\) \(\ ...

  7. P2261 [CQOI2007]余数求和 【整除分块】

    一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$  ...

  8. 2018.07.17 CQOI2017 余数求和(整除分块)

    洛谷传送门 bzoj传送门 这道题要用到学习莫比乌斯反演时掌握的整除分块算法,也就是对于一个数n" role="presentation" style="pos ...

  9. 洛谷 P2261 [CQOI2007]余数求和 ||整除(数论)分块

    参考:题解 令f(i)=k%i,[p]表示不大于p的最大整数f(i)=k%i=k-[k/i]*i令q=[k/i]f(i)=k-qi如果k/(i+1)=k/i=qf(i+1)=k-q(i+1)=k-qi ...

随机推荐

  1. woj1010 alternate sum 数学 woj1011 Finding Teamates 数学

    title: woj1010 alternate sum 数学 date: 2020-03-10 categories: acm tags: [acm,woj,数学] 一道数学题.简单. 题意 给一个 ...

  2. zzuli-2266 number

    题目描述 某人刚学习了数位DP,他在某天忽然思考如下问题: 给定n,问有多少数对<x, y>满足: x, y∈[1, n], x < y x, y中出现的[0, 9]的数码种类相同 ...

  3. HDU 4280 Island Transport(HLPP板子)题解

    题意: 求最大流 思路: \(1e5\)条边,偷了一个超长的\(HLPP\)板子.复杂度\(n^2 \sqrt{m}\).但通常在随机情况下并没有isap快. 板子: template<clas ...

  4. 作业day03吴童

    小作业3 1. 求区间[100, 200]内10个随机整型数的最大值 1 import random 2 a = [] 3 for i in range(10): 4 n = random.randi ...

  5. Dockfile搭建极简LNMP环境

    最近才发现ThinkPHP6.0和CI4.x都要求php版本为7.1以上了,本机的php版本还停留在7.0.3x,又懒得升级,于是考虑使用Docker来运行一个lnmp环境. 常规环境搭建的方式有两种 ...

  6. HTML form All In One

    HTML form All In One action + method onsubmit, submit event action + method <form action="&q ...

  7. PostgreSQL All In One

    PostgreSQL All In One SQL macOS https://www.postgresql.org/download/macosx/ EDB installer PostgreSQL ...

  8. Professional JavaScript for Web Developers 4th Edition

    Professional JavaScript for Web Developers 4th Edition learning notes / 学习笔记 https://github.com/xgqf ...

  9. bash shell cli tools

    bash shell cli tools before # create files $ mkdir app-component $ cd app-component $ touch index.ht ...

  10. 近期最值得关注的潜力币种——VAST

    近期币圈的热度又再次被掀起,很多新的币种也争相上线,还有一些币种虽然还未上线,但是在币圈的火热程度也非同一般.小编留意了一下,最近在币圈讨论的最火的便是VAST代币.许多生态建设者乃至机构都表示很看好 ...