LRU (Least Recently Used), 即最近最少使用用算法,是一种常见的 Cache 页面置换算法,有利于提高 Cache 命中率。

LRU 的算法思想:对于每个页面,记录该页面自上一次被访问以来所经历的时间 \(t\),当淘汰一个页面时,应选择所有页面中其 \(t\) 值最大的页面,即内存中最近一段时间内最长时间未被使用的页面予以淘汰。

其余常见的页面置换算法还有:

  • OPT:理想化的置换算法,假设 OS 知道程序后续访问的所有页面的顺序,每次淘汰页面时,OPT 选择的页面将是以后永不使用的,或是在最长(未来)时间内不再被访问的页面。采用 OPT 通常可保证最低的缺页率(最高的 Cache 命中率)。
  • FIFO:先进先出
  • Clock 置换,又称最近未用算法 (NRU,Not Recently Used) 。
    • 算法思想:为每个页面设置一个访问位,再将内存中的页面都通过链接指针链接成一个环形队列。当某个页被访问时,其访问位置 1。当需要淘汰一个页面时,只需检查页的访问位。如果是 0,就选择该页换出;如果是 1,暂不换出,将访问位改为 0,继续检查下一个页面。若第一轮扫描中所有的页面都是 1,则将这些页面的访问位一次置为 0 后,再进行第二轮扫描,第二轮扫描中一定会有访问位为 0 的页面。
  • LFU (Least Frequently Used) :为每个页面配置一个计数器,一旦某页被访问,则将其计数器的值加1,在需要选择一页置换时,则将选择其计数器值最小的页面,即内存中访问次数最少的页面进行淘汰。

LRU

例子

给定一个程序的页面访问序列:7 0 1 2 0 3 0 4,假设实际 Cache 只有 3 个页面大小,根据 LRU,画出 Cache 中的页面变化过程。

使用一个栈(大小是 3),栈顶总是最新访问的页面。当栈满时,最新访问页面为 x

  • x 不在栈当中,去除栈底元素,把 x 置入栈顶。
  • x 在栈当中,把 x 移至栈顶,其他页面顺序不变。

如下图所示,图源自知乎

如果简单使用一个数组来模拟上述过程,访问一次页面的平均时间复杂度为 \(O(n)\) 。

实现

在这里,LRU 存放的数据是一个键值对 (key, val)

Leetcode 题目:146. LRU 缓存机制

要求 getput 操作都在 \(O(1)\) 时间内完成。

方法:双向链表+哈希。双向链表头尾各自带有一个 dummy 节点(可以简化插入、删除操作的代码)。

哈希表与链表的关系如图所示(图来源自 Leetcode 讨论区)。

需要保证 get 方法在 \(O(1)\) 内完成,因此哈希表只能使用 unordered_map 而不是 map

struct Node
{
int key, value;
Node *next, *prev;
Node(int k, int v) : key(k), value(v), prev(nullptr), next(nullptr) {}
};
class List
{
public:
Node *head, *tail;
int length;
List() : length(0)
{
head = new Node(-1, -1), tail = new Node(-1, -1);
head->next = tail, tail->prev = head;
}
void pushFront(Node *node)
{
auto next = head->next;
head->next = node, node->next = next;
next->prev = node, node->prev = head;
length++;
}
void pushBack(Node *node)
{
auto prev = tail->prev;
prev->next = node, node->next = tail;
tail->prev = node, node->prev = prev;
length++;
}
bool empty() { return length == 0 && head->next == tail && tail->prev == head; }
Node *popFront()
{
if (empty()) return nullptr;
auto p = head->next;
head->next = p->next, p->next->prev = head;
p->next = p->prev = nullptr;
length--;
return p;
}
Node *popBack()
{
if (empty()) return nullptr;
auto p = tail->prev;
tail->prev = p->prev, p->prev->next = tail;
p->prev = p->next = nullptr;
length--;
return p;
} Node *remove(Node *node)
{
if (node == nullptr || empty()) return nullptr;
auto prev = node->prev, next = node->next;
prev->next = next, next->prev = prev;
node->next = node->prev = nullptr;
length--;
return node;
}
};
class LRUCache
{
public:
unordered_map<int, Node *> table;
List list;
int capacity;
LRUCache(int capacity) { this->capacity = capacity; }
int get(int key)
{
if (table.count(key) == 0) return -1;
else
{
auto node = list.remove(table[key]);
list.pushFront(node);
return node->value;
}
}
void put(int key, int value)
{
if (table.count(key) == 0)
{
auto node = new Node(key, value);
table[key] = node;
if (list.length == capacity)
{
auto p = list.popBack();
table.erase(p->key);
delete p;
}
list.pushFront(node);
}
else
{
table[key]->value = value;
list.pushFront(list.remove(table[key]));
}
}
};

下面尝试使用 STL 中的 list 完成。

TODO.

LFU

Leetcode 题目:460. LFU 缓存

LFU (Least Frequently Used) 的主要思想是为每个缓存项一个计数器,一旦某个缓存项被访问,则将其计数器的值加 1,在需要淘汰缓存项时,则将选择其计数器值最小的,即内存中访问次数最少的缓存进行淘汰。

按照这一描述,首先想到的是可以通过哈希表 + 优先队列(小顶堆),堆中的数据以缓存项的计数器作为键值排序

对于 get 方法而言,通过哈希表找到 key 对应元素的位置,计数器加 1,重新调整堆,时间复杂度为 \(O(\log{n})\) .

对于 put 方法而言,如果缓存中存在该元素,计数器加一,重新调整堆,时间复杂度为 \(O(\log{n})\) ;如果不存在该元素并且缓存已满,那么直接把堆顶元素替换为新的元素 <key,value>(因为新元素的计数器为 1 ,必然也是最小的),时间复杂度为 \(O(1)\)。因此,put 方法总的时间复杂度为 \(O(\log{n})\) .

这一方法基于堆实现,无法保证当 2 个元素的计数器相同时,被淘汰的是「较旧」的元素。


现考虑 getput 均为 \(O(1)\) 的解法。

考虑基于「哈希+十字链表」实现,如下图所示(出处见水印)。

链表节点定义为:

struct Node
{
int key, value, counter;
Node *prev, *next, *another;
};

hashmap 用于记录 key -> Node* 的映射关系,辅助 get 方法在 \(O(1)\) 时间内完成。

对于访问次数相同的节点,用链表连接起来(上图的横向链表),链表的头部记录访问次数,随后连接缓存数据的节点,数据节点有一个额外的指针 another 指向第一个节点(即记录访问次数的节点),然后把所有链表的头部也连接起来(上图的纵向链表),形成十字链表。

对于 get 方法,通过 p = hashmap[key] 找到指向数据的指针,然后把 p 移动到 count+1 的链表尾部(如果链表 count+1 不存在则插入一个)。

考虑 put 方法的最坏情况,如果 <key, val> 不在缓存当中, 并且缓存已满,那么就从十字链表的第一个链表(count 值最小的链表)删除尾部节点,并在头部插入新节点(这么做是为了按照从新到旧存储每个数据,尾部就是「最旧」的节点,可以做到计数相同的情况下,淘汰旧元素)。

但这种「十字链表」结构实现起来过于复杂(代码肯定不简洁),所以我们把「十字链表」转换为一个哈希表 hash<int, List> ,如下图所示。

代码实现:

struct Node
{
int key, value, counter;
Node *next, *prev;
Node(int k, int v) : key(k), value(v), counter(1), prev(nullptr), next(nullptr) {}
};
class List
{
public:
Node *head, *tail;
int length;
List() : length(0)
{
head = new Node(-1, -1), tail = new Node(-1, -1);
head->next = tail, tail->prev = head;
}
void pushFront(Node *node)
{
auto next = head->next;
head->next = node, node->next = next;
next->prev = node, node->prev = head;
length++;
}
void pushBack(Node *node)
{
auto prev = tail->prev;
prev->next = node, node->next = tail;
tail->prev = node, node->prev = prev;
length++;
}
bool empty() { return length == 0 && head->next == tail && tail->prev == head; }
Node *popFront()
{
if (empty()) return nullptr;
auto p = head->next;
head->next = p->next, p->next->prev = head;
p->next = p->prev = nullptr;
length--;
return p;
}
Node *popBack()
{
if (empty()) return nullptr;
auto p = tail->prev;
tail->prev = p->prev, p->prev->next = tail;
p->prev = p->next = nullptr;
length--;
return p;
} Node *remove(Node *node)
{
if (node == nullptr || empty()) return nullptr;
auto prev = node->prev, next = node->next;
prev->next = next, next->prev = prev;
node->next = node->prev = nullptr;
length--;
return node;
}
};
class LFUCache
{
public:
unordered_map<int, Node *> table;
unordered_map<int, List> data;
int capacity, total, minCounter;
LFUCache(int capacity)
{
this->capacity = capacity;
this->total = 0;
this->minCounter = 1;
} int get(int key)
{
if (table.count(key) == 0) return -1;
else
{
auto node = table[key];
int counter = node->counter;
node->counter++;
data[counter].remove(node);
data[counter + 1].pushFront(node);
if (data[counter].length == 0 && counter == minCounter)
minCounter = counter + 1;
return node->value;
}
} void put(int key, int value)
{
// 面向测试用例编程,这个 capacity = 0 属实不讲武德
if (capacity == 0) return;
if (table.count(key) == 0)
{
auto node = new Node(key, value);
if (total == capacity)
{
auto p = data[minCounter].popBack();
table.erase(p->key);
total--;
delete p;
}
minCounter = 1;
table[key] = node;
data[1].pushFront(node);
total++;
}
else
{
auto node = table[key];
int counter = node->counter;
node->value = value, node->counter++;
data[counter].remove(node);
data[counter + 1].pushFront(node);
if (data[counter].length == 0 && counter == minCounter)
minCounter = counter + 1;
}
}
};

缓存淘汰算法 LRU 和 LFU的更多相关文章

  1. 图解缓存淘汰算法二之LFU

    1.概念分析 LFU(Least Frequently Used)即最近最不常用.从名字上来分析,这是一个基于访问频率的算法.与LRU不同,LRU是基于时间的,会将时间上最不常访问的数据淘汰;LFU为 ...

  2. 聊聊缓存淘汰算法-LRU 实现原理

    前言 我们常用缓存提升数据查询速度,由于缓存容量有限,当缓存容量到达上限,就需要删除部分数据挪出空间,这样新数据才可以添加进来.缓存数据不能随机删除,一般情况下我们需要根据某种算法删除缓存数据.常用淘 ...

  3. 淘汰算法 LRU、LFU和FIFO

    含义: FIFO:First In First Out,先进先出LRU:Least Recently Used,最近最少使用 LFU:Least Frequently Used,最不经常使用 以上三者 ...

  4. 缓存淘汰算法--LRU算法

    1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是"如果数据最近被访问过,那么将来被访问的几率也 ...

  5. 缓存淘汰算法---LRU

    1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”. ...

  6. 缓存淘汰算法---LRU转

    1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”. ...

  7. 缓存淘汰算法--LRU算法(转)

    (转自:http://flychao88.iteye.com/blog/1977653) 1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访 ...

  8. 昨天面试被问到的 缓存淘汰算法FIFO、LRU、LFU及Java实现

    缓存淘汰算法 在高并发.高性能的质量要求不断提高时,我们首先会想到的就是利用缓存予以应对. 第一次请求时把计算好的结果存放在缓存中,下次遇到同样的请求时,把之前保存在缓存中的数据直接拿来使用. 但是, ...

  9. 04 | 链表(上):如何实现LRU缓存淘汰算法?

    今天我们来聊聊“链表(Linked list)”这个数据结构.学习链表有什么用呢?为了回答这个问题,我们先来讨论一个经典的链表应用场景,那就是+LRU+缓存淘汰算法. 缓存是一种提高数据读取性能的技术 ...

随机推荐

  1. 手把手教你配置KVM服务器

    1 Ubuntu系统安装 1.1 制作启动盘 准备一个U盘,将其清空后,去官网下载Ubuntu18.04系统的iso镜像文件,并将其拷进U盘.然后下载一个UltralOS软碟通工具,完成安装后打开软碟 ...

  2. [日常摸鱼]bzoj2823 [AHOI2012]信号塔

    题意:$n$个点,求最小圆覆盖,$n \leq 5e5$ 这题数据是随机的hhh 我们可以先求出凸包然后对凸包上的点求最小圆覆盖-(不过直接求应该也行?) 反正随便写好像都能过- #include&l ...

  3. [日常摸鱼]Uva11178Morley's Theorem-几何

    题意:给一个$\Delta ABC$,分别做三个角的三等分线相交成$\Delta DEF$,求出$D,E,F$的坐标. 直接根据题意模拟 #include<cstdio> #include ...

  4. 第四章 Sentinel--服务容错

    我们接着承接上篇继续讲下去 : 第三章 Nacos Discovery–服务治理,开始第四篇的学习 第四章 Sentinel–服务容错 4.1 高并发带来的问题 在微服务架构中,我们将业务拆分成一个个 ...

  5. C#读取DLL文件获取所有类

    说明 调用Web.dll 文件,获取其中的所有的WebService 参考 https://blog.csdn.net/huoliya12/article/details/78873123 流程 使用 ...

  6. win10/win7下vs2013自带IISExpress支持局域网访问

    打开IISExpress安装目录(C:\Users\Administrator\Documents\IISExpress\config),一般为我的文档下,用记事本打开applicationhost. ...

  7. python初学者-从键盘获取信息

    name = input(">>> 姓名:") QQ = input(">>>QQ: ") phone_num = inpu ...

  8. ProGuard使用文档

    介绍 是一个对于Java字节码的免费的压缩器,优化器,混淆器和审核器: l  它检测并删除未使用的类,字段,方法和属性. l  它优化字节码并删除未使用的指令. l  它重命名其余类.字段和方法使用短 ...

  9. CentOS7下常用安装软件服务rpm方式的介绍

    简介:介绍rpm软件包的管理 rpm安装:安装别人编译好的软件包,rpm即Redhat Package Manager,是Redhat的软件包管理方式   rpm安装优点: 软件已经编译打包,所以传输 ...

  10. Java安全之初探weblogic T3协议漏洞

    Java安全之初探weblogic T3协议漏洞 文章首发自安全客:Java安全之初探weblogic T3协议漏洞 0x00 前言 在反序列化漏洞里面就经典的还是莫过于weblogic的反序列化漏洞 ...