前面我们已经学习了单细胞转录组分析的:使用Cell Ranger得到表达矩阵doublet检测,今天我们开始Seurat标准流程的学习。这一部分的内容,网上有很多帖子,基本上都是把Seurat官网PBMC的例子重复一遍,这回我换一个数据集,细胞类型更多,同时也会加入一些实际分析中很有用的技巧。

1. 导入数据,创建Seurat对象

library(Seurat)
library(tidyverse)
testdf=read.table("test_20210105.txt",header = T,row.names = 1)
test.seu=CreateSeuratObject(counts = testdf)

看一下长什么样子

> test.seu
An object of class Seurat
33538 features across 6746 samples within 1 assay
Active assay: RNA (33538 features)

测试数据有33538个基因,6746个细胞。除此之外,还要关注一下另外两层信息:test.seu@meta.data这个数据框用来存储元数据,每一个细胞都有多个属性;test.seu[["RNA"]]@counts这个稀疏矩阵用来存储原始UMI表达矩阵。

> head(test.seu@meta.data)
orig.ident nCount_RNA nFeature_RNA
A_AAACCCAAGGGTCACA A 3714 1151
A_AAACCCAAGTATAACG A 1855 816
A_AAACCCAGTCTCTCAC A 1530 823
A_AAACCCAGTGAGTCAG A 11145 1087
A_AAACCCAGTGGCACTC A 2289 834
A_AAACGAAAGCCAGAGT A 3714 990 > test.seu[["RNA"]]@counts[1:4,1:4]
4 x 4 sparse Matrix of class "dgCMatrix"
A_AAACCCAAGGGTCACA A_AAACCCAAGTATAACG A_AAACCCAGTCTCTCAC A_AAACCCAGTGAGTCAG
MIR1302-2HG . . . .
FAM138A . . . .
OR4F5 . . . .
AL627309.1 . . . .

2. 简单过滤

接下来,我们根据每个细胞内部线粒体基因表达占比检测到的基因数检测的UMI总数这三个方面来对细胞进行简单的过滤。

先计算细胞内线粒体基因表达占比,类似的核糖体基因(大多为RP开头)也能这样计算,还要注意不要将线粒体基因的MT-写成了MT,不然就把别的基因也算进去了:

test.seu[["percent.mt"]] <- PercentageFeatureSet(test.seu, pattern = "^MT-")  #正则表达式,表示以MT-开头;test.seu[["percent.mt"]]这种写法会在meta.data矩阵加上一列

这里我已经根据预先设定好的阈值过滤了,代码如下

test.seu <- subset(test.seu, subset = nCount_RNA > 1000 &
nFeature_RNA < 5000 &
percent.mt < 30 &
nFeature_RNA > 600)

过滤之后的数值分布如下,用到VlnPlot()函数,该绘图函数里面的feature参数可以是meta.data矩阵的某一列,也可以是某一个基因,很多文章都用这种图展示marker gene

VlnPlot(test.seu,features = c("nCount_RNA", "nFeature_RNA", "percent.mt"))

nFeature_RNA/nCount_RNA不能太小(空液滴),不能太大(doublet、测序技术限制), 而且阈值设定要综合多个样本来看,像下面这样

一般在CD45阴性的细胞中percent.mt的阈值大一些,50%也看过几次了

3. 标准化,消除文库大小的影响

如何标准化:LogNormalize: Feature counts for each cell are divided by the total counts for that cell and multiplied by the scale.factor. This is then natural-log transformed using log1p.(先相除,再求对数)

test.seu <- NormalizeData(test.seu, normalization.method = "LogNormalize", scale.factor = 10000)

标准化之后的矩阵存储在test.seu[["RNA"]]@data

> test.seu[["RNA"]]@data[1:4,1:4]
4 x 4 sparse Matrix of class "dgCMatrix"
A_AAACCCAAGGGTCACA A_AAACCCAAGTATAACG A_AAACCCAGTCTCTCAC A_AAACCCAGTGAGTCAG
MIR1302-2HG . . . .
FAM138A . . . .
OR4F5 . . . .
AL627309.1 . . . .

4. 找Variable基因

因为单细胞表达矩阵很稀疏(很多0),选high variable基因的目的可以找到包含信息最多的基因(很多基因的表达差不多都是0),同时极大提升软件运行速度

test.seu <- FindVariableFeatures(test.seu, selection.method = "vst", nfeatures = 2000)

这些基因存储在VariableFeatures(test.seu),有时候可能需要人为指定high variable基因,可以这样:

VariableFeatures(test.seu)="specific genes"

5. 归一化表达矩阵

(基于前面得到的data矩阵)

这一步之后,所有基因的表达值的分布就差不多了,不然表达值不在一个数量级,对后续降维聚类影响挺大。新的矩阵存储在test.seu[["RNA"]]@scale.data里面。

test.seu <- ScaleData(test.seu, features = rownames(test.seu))

默认只对上一步选出来的基因scale,这里调整为所有基因,是为了方便以后画热图,画热图一般会用scale之后的z-score

6. 降维聚类

(基于前面得到的high variable基因的scale矩阵)

test.seu <- RunPCA(test.seu, npcs = 50, verbose = FALSE)
test.seu <- FindNeighbors(test.seu, dims = 1:30)
test.seu <- FindClusters(test.seu, resolution = 0.5) test.seu <- RunUMAP(test.seu, dims = 1:30)
test.seu <- RunTSNE(test.seu, dims = 1:30)

Run开头的函数降维,Find开头的函数聚类,一般就这几步,相对固定。PCA将原来2000维的数据降到50维,dims参数表示使用多少个主成分(一般20左右就可以了,多几个少几个对结果影响不大),resolution参数表达聚类的分辨率,这个值大于0,一般都是在0-1范围里面调整,越大得到的cluster越多,这个值可以反复调整,并不会改变降维的结果(也就是tsne、umap图的二维坐标)。

这一步之后的数据是这样的

> test.seu
An object of class Seurat
33538 features across 6746 samples within 1 assay
Active assay: RNA (33538 features)
3 dimensional reductions calculated: pca, umap, tsne
# 几种降维方式都会呈现出来

聚类之后多了两列,RNA_snn_res.0.5记录了你用的分辨率,最终的聚类结果保存在seurat_clusters中

> head(test.seu@meta.data)
orig.ident nCount_RNA nFeature_RNA percent.mt RNA_snn_res.0.5
A_AAACCCAAGGGTCACA A 3714 1151 9.585353 8
A_AAACCCAAGTATAACG A 1855 816 12.776280 0
A_AAACCCAGTCTCTCAC A 1530 823 14.248366 12
A_AAACCCAGTGAGTCAG A 11145 1087 2.853297 4
A_AAACCCAGTGGCACTC A 2289 834 15.640017 3
A_AAACGAAAGCCAGAGT A 3714 990 5.654281 0
seurat_clusters
A_AAACCCAAGGGTCACA 8
A_AAACCCAAGTATAACG 0
A_AAACCCAGTCTCTCAC 12
A_AAACCCAGTGAGTCAG 4
A_AAACCCAGTGGCACTC 3
A_AAACGAAAGCCAGAGT 0

7. tsne/umap展示结果

library(cowplot)
test.seu$patient=str_replace(test.seu$orig.ident,"_.*$","")
p1 <- DimPlot(test.seu, reduction = "tsne", group.by = "patient", pt.size=0.5)
p2 <- DimPlot(test.seu, reduction = "tsne", group.by = "ident", pt.size=0.5, label = TRUE,repel = TRUE) #后面两个参数用来添加文本标签
p3 <- DimPlot(test.seu, reduction = "umap", group.by = "patient", pt.size=0.5)
p4 <- DimPlot(test.seu, reduction = "umap", group.by = "ident", pt.size=0.5, label = TRUE,repel = TRUE) fig_tsne <- plot_grid(p1, p2, labels = c('patient','ident'),align = "v",ncol = 2)
ggsave(filename = "tsne.pdf", plot = fig_tsne, device = 'pdf', width = 30, height = 15, units = 'cm')
fig_umap <- plot_grid(p3, p4, labels = c('patient','ident'),align = "v",ncol = 2)
ggsave(filename = "umap.pdf", plot = fig_umap, device = 'pdf', width = 30, height = 15, units = 'cm')

ident表示每个细胞的标签,聚类之后就是聚类的结果,在一些特定场景可以更换。

在umap图中,cluster之间的距离更明显


从上面的图可以看出不同样本其实是有批次效应的,下一讲我会介绍两种去批次效应的方法。

因水平有限,有错误的地方,欢迎批评指正!

单细胞分析实录(5): Seurat标准流程的更多相关文章

  1. 【代码更新】单细胞分析实录(20): 将多个样本的CNV定位到染色体臂,并画热图

    之前写过三篇和CNV相关的帖子,如果你做肿瘤单细胞转录组,大概率看过: 单细胞分析实录(11): inferCNV的基本用法 单细胞分析实录(12): 如何推断肿瘤细胞 单细胞分析实录(13): in ...

  2. 【代码更新】单细胞分析实录(21): 非负矩阵分解(NMF)的R代码实现,只需两步,啥图都有

    1. 起因 之前的代码(单细胞分析实录(17): 非负矩阵分解(NMF)代码演示)没有涉及到python语法,只有4个python命令行,就跟Linux下面的ls grep一样的.然鹅,有几个小伙伴不 ...

  3. 单细胞分析实录(4): doublet检测

    最近Cell Systems杂志发表了一篇针对现有几种检测单细胞测序doublet的工具的评估文章,系统比较了常见的例如Scrublet.DoubletFinder等工具在检测准确性.计算效率等方面的 ...

  4. 单细胞分析实录(1): 认识Cell Hashing

    这是一个新系列 差不多是一年以前,我定导后没多久,接手了读研后的第一个课题.合作方是医院,和我对接的是一名博一的医学生,最开始两边的老师很排斥常规的单细胞文章思路,即各大类细胞分群.注释.描述,所以起 ...

  5. 单细胞分析实录(3): Cell Hashing数据拆分

    在之前的文章里,我主要讲了如下两个内容:(1) 认识Cell Hashing:(2): 使用Cell Ranger得到表达矩阵.相信大家已经知道了cell hashing与普通10X转录组的差异,以及 ...

  6. 单细胞分析实录(8): 展示marker基因的4种图形(一)

    今天的内容讲讲单细胞文章中经常出现的展示细胞marker的图:tsne/umap图.热图.堆叠小提琴图.气泡图,每个图我都会用两种方法绘制. 使用的数据来自文献:Single-cell transcr ...

  7. 单细胞分析实录(17): 非负矩阵分解(NMF)代码演示

    本次演示使用的数据来自2017年发表于Cell的头颈鳞癌单细胞文章:Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumo ...

  8. 单细胞分析实录(2): 使用Cell Ranger得到表达矩阵

    Cell Ranger是一个"傻瓜"软件,你只需提供原始的fastq文件,它就会返回feature-barcode表达矩阵.为啥不说是gene-cell,举个例子,cell has ...

  9. 单细胞分析实录(9): 展示marker基因的4种图形(二)

    在上一篇中,我已经讲解了展示marker基因的前两种图形,分别是tsne/umap图.热图,感兴趣的读者可以回顾一下.这一节我们继续学习堆叠小提琴图和气泡图. 3. 堆叠小提琴图展示marker基因 ...

随机推荐

  1. PyQt(Python+Qt)学习随笔:QTreeWidget树型部件中的QTreeWidgetItem项构造方法

    老猿Python博文目录 专栏:使用PyQt开发图形界面Python应用 老猿Python博客地址 QTreeWidget树型部件的项是单独的类对象,这个类就是QTreeWidgetItem. QTr ...

  2. Python基础篇学习感悟:学如不及,犹恐失之

    从2019年3月底开始学习Python,4月12日在CSDN发表第一篇博文,时至今日已有4个月零12天. 4个多月的学习,老猿从一个Python小白成长到今天,可以说对Python这门语言已经略知一二 ...

  3. 如何在苹果电脑上创建一个html格式文件,并在浏览器正确打开

    之前一直使用windows系统的电脑,创建文件很简单,改格式也非常的简单.但换了苹果电脑,如何创建一个HTML文件?却把我给整蒙了. 首先,为什么mac上不能直接新建文本文件? 因为mac一都是以应用 ...

  4. 廖雪峰官网学习js 数据类型和变量

    数据类型: number 不分整数 和浮点数 字符串 用' '      "  "   表示 布尔值  true  false && 与运算符(都ture才ture ...

  5. 3款pdf插件介绍

    1.pdf.js:推荐使用.小窗口可以使用iframe来解决.ie8及以下不支持,但是360的兼容模式ie8下可以在新标签页中打开,在iframe中打不开,ie8中在新标签页也不支持打开.可使用ua- ...

  6. JAVA中关于set()和get()方法的理解以及使用

    set()和get()方法的理解 set和get这两个词的表面意思,set是设置的意思,而get是获取的意思,顾名思义,这两个方法是对数据进行设置和获取用的. 而且,在类中使用set和get方法时,都 ...

  7. mysql 8.0忘记root密码

    1.修改参数文件添加以下内容 skip-grant-tables 2.关闭数据库 [root@node01 ~]# /etc/init.d/mysqld8 stop Shutting down MyS ...

  8. SpringBoot异步调用--@Async详解

    1. 概述   在日常开发中,为了提高主线程的效率,往往需要采用异步调用处理,例如系统日志等.在实际业务场景中,可以使用消息中间件如RabbitMQ.RocketMQ.Kafka等来解决.假如对高可用 ...

  9. MySQL01-数据库概述

    1.概述 1.1 什么是数据库? 用于存储和管理数据的仓库. 1.2 数据库的特点: 1. 持久化存储数据的.其实数据库就是一个文件系统 2. 方便存储和管理数据 3. 使用了统一的方式操作数据库 - ...

  10. (菜鸟都能看懂的)网络最大流最小割,Ford-Fulkerson及Dinic详解

    关于网络流: 1.定义 个人理解网络流的意思便是由一条条水管以及一个源点S一个汇点T和一些节点组成的一张图,现在要从S点流水到T点,问怎么流才能让流到T的流量最大.边权表示的是这条水管的最大流量,假设 ...