题目:戳这里

题意:起点(0,0),终点(n,m),走k步,可以走8个方向,问能不能走到,能走到的话最多能走多少个斜步。

解题思路:起点是固定的,我们主要分析终点。题目要求走最多的斜步,斜步很明显有一个性质就是不会改变n和m的相对奇偶性。就是走斜步的话,n和m要么+1要么-1,如果一开始n和m奇偶性不同,那么只走斜步最后奇偶性怎么都不会相同。因为起点始终是(0,0),所以如果终点(n,m)的n和m奇偶性不同,那么肯定要走一个直步,而且只需要走一次直步。为什么只需要一次直步呢,我们可以随便画一条斜线,可以发现如果给一次走直步的机会,那么这条斜线上任意点的上下左右我们都可以到达。

也就是说,足够的斜步,可以让我们从(0,0)到达所有n与m奇偶性相同的点。再加上一个直步的话,就可以到达所有点了。而如果(n,m)本身奇偶性相同,但是与k不同,那么就是从起点到达(n,m)后,如果只走斜步,是没法刚好返回终点的。此时最优的方法就是把一个斜步化成两个直步,用来改变k与(n,m)的奇偶关系。

总结起来就是当n与m奇偶性不同的时候,--n,--k,否则--n,--m,k-=2。

判断k>=n是否成立,不成立说明走不到,成立直接输出k。

附ac代码:

 1 #include<bits/stdc++.h>
2 using namespace std;
3 const int maxn = 1e3 + 10;
4 typedef long long ll;
5 int nu[maxn][11];
6 int ans[2][555];
7 void sp(ll *a, ll *b)
8 {
9 *a = *a ^ *b;
10 *b = *a ^ *b;
11 *a = *a ^ *b;
12 }
13 int main()
14 {
15 int q;
16 scanf("%d", &q);
17 ll n, m, k;
18 while(q--)
19 {
20 scanf("%lld %lld %lld", &n, &m, &k);
21 if(n < m)
22 {
23 sp(&n, &m);
24 }
25 // printf("%lld %lld\n", n, m);
26 if((n&1) != (m&1))
27 {
28 --n;
29 --k;
30 }
31 else if((n&1) != (k&1))
32 {
33 n -= 1;
34 m -= 1;
35 k -= 2;
36 }
37 if(k >= n)
38 {
39 printf("%lld\n", k);
40 }
41 else
42 {
43 puts("-1");
44 }
45 }
46 return 0;
47 }

codeforces 1036B - Diagonal Walking v.2【思维+构造】的更多相关文章

  1. CF 1036B Diagonal Walking v.2——思路

    题目:http://codeforces.com/contest/1036/problem/B 比赛时只能想出不合法的情况还有走到终点附近的方式. 设n<m,不合法就是m<k.走到终点方式 ...

  2. Diagonal Walking v.2 CodeForces - 1036B (思维,贪心)

    Diagonal Walking v.2 CodeForces - 1036B Mikhail walks on a Cartesian plane. He starts at the point ( ...

  3. Codeforces Round #501 (Div. 3) D. Walking Between Houses (思维,构造)

    题意:一共有\(n\)个房子,你需要访问\(k\)次,每次访问的距离是\(|x-y|\),每次都不能停留,问是否能使访问的总距离为\(s\),若能,输出\(YES\)和每次访问的房屋,反正输出\(NO ...

  4. CF 1036 B Diagonal Walking v.2 —— 思路

    题目:http://codeforces.com/contest/1036/problem/B 题意:从 (0,0) 走到 (n,m),每一步可以向八个方向走一格,问恰好走 k 步能否到达,能到达则输 ...

  5. B. Diagonal Walking v.2

    链接 [https://i.cnblogs.com/EditPosts.aspx?opt=1] 题意 二维平面从原点出发k步,要到达的点(x,y),每个位置可以往8个方位移动,问到达目的地最多可以走多 ...

  6. hdu4671 思维构造

    pid=4671">http://acm.hdu.edu.cn/showproblem.php? pid=4671 Problem Description Makomuno has N ...

  7. 思维/构造 HDOJ 5353 Average

    题目传送门 /* 思维/构造:赛后补的,当时觉得3题可以交差了,没想到这题也是可以做的.一看到这题就想到了UVA_11300(求最小交换数) 这题是简化版,只要判断行不行和行的方案就可以了,做法是枚举 ...

  8. A Mist of Florescence CodeForces - 989C(思维构造)

    题意: 让你构造一个图,使得A,B,C,D的个数为给定的个数,上下左右连通的算一个. 哎呀 看看代码就懂了..emm..很好懂的 #include <bits/stdc++.h> usin ...

  9. Educational Codeforces Round 53C(二分,思维|构造)

    #include<bits/stdc++.h>using namespace std;const int N=1e6+6;int x[N],y[N];int sx,sy,n;char s[ ...

随机推荐

  1. 【ELK】elastalert 日志告警

    一.环境 系统:centos7 elk 版本:7.6.2 1.1 ElastAlert 工作原理 周期性的查询Elastsearch并且将数据传递给规则类型,规则类型定义了需要查询哪些数据. 当一个规 ...

  2. ASP.NET MVC5+EF6+EasyUI 后台管理系统(89)-国际化,本地化,多语言应用

    开篇 早年写过一篇多语言的应用 :   本地化(多语言)   讲述了如何创建多语言的资源文件,并利用资源文件来获得页面和请求的语言属性 本次补充这篇文章,的原因是在实际项目中,有多种需要多语言的情况 ...

  3. Java运算符及包机制

    Java中的运算符及包机制 算术运算符:+ - * / % ++ -- 赋值运算符:=,+=,-=,*=,/= 关系运算符:>,<,>=,<=,==,!=,instanceof ...

  4. 【JeecgBoot】关于 jeecg-boot 的项目理解、使用心得和改进建议

    工欲善其事,必先利其器. 脚手架选型 一年前,我接到为团队落地一个快速开发脚手架的任务. 在月底这节骨眼上,时间紧,任务急,有想自己撸一个脚手架的人都赶紧把这想法收起来吧!这劳民又伤身的事咱肯定是不能 ...

  5. Spring-01-事务

    Spring事务机制 spring事务机制最重要的两个配置项,隔离级别和传播特性. 1. 隔离级别 隔离级别针对高并发问题导致的数据库丢失更新问题 1.1 数据库的4大基本特征 原子性(Atomic) ...

  6. U盘制作系统启动盘方法

    1.下载一个UltralSO用来把CentOS系统镜像写入U盘作为启动安装盘 U盘用一个空U盘,会格式化的. 下载下来,使用试用版就行 刻录完成.

  7. 记一次Nginx反向代理500的排查记录

    今天公司项目遇到一个奇怪的问题,记录一下. 注: 数据已经过脱敏处理,未暴露公司具体的IP等数据. TLDR; 项目简单介绍 用 Vue + ElementUI 实现的后台项目(以下简称:a-proj ...

  8. 阿里云 Redis 开发规范

    阿里云Redis开发规范-阿里云开发者社区 https://developer.aliyun.com/article/531067 https://mp.weixin.qq.com/s/UWE1Kx6 ...

  9. 目前 c++ primer学习总结笔记

    C++的开始 1 main的返回值:0为成功状态,非0为系统定义的错误类型 2 输入输出:计算结果为左侧运算对象,IO操作读写缓冲与程序中的动作无关 3 输入流istream对象:cin(标准输入): ...

  10. HttpClient之基本使用

    1.HttpClient简介 http协议可以说是现在Internet上面最重要,使用最多的协议之一了,越来越多的java应用需要使用http协议来访问网络资源,特别是现在rest api的流行,Ht ...