比赛链接:https://atcoder.jp/contests/abc169/tasks

A - Multiplication 1

#include <bits/stdc++.h>
using namespace std;
int main() {
int a, b; cin >> a >> b;
cout << a * b << "\n";
}

B - Multiplication 2

题意

计算 $a_1 \times a_2 \times ... \times a_n$ 。($2≤n≤10^5, 0≤ a_i ≤ 10^{18}$)

题解一

若 $ans$ 乘以某个 $a_i$ 大于 $10^{18}$ 则溢出,即:

$ans \times a_i > 10^{18}$,

为避免运算过程中乘积溢出,移项得:$a_i > \frac{10^{18}}{ans}$ 。

代码

#include <bits/stdc++.h>
using ll = long long;
using namespace std;
const ll MAXN = 1e18;
int main() {
int n; cin >> n;
ll a[n] = {};
for (int i = 0; i < n; i++)
cin >> a[i];
if (count(a, a + n, 0)) {
cout << 0 << "\n";
return 0;
}
ll ans = 1;
for (int i = 0; i < n; i++) {
if (a[i] > MAXN / ans) {
cout << -1 << "\n";
return 0;
}
ans *= a[i];
}
cout << ans << "\n";
}

题解二

转化为 __int128 可以避免溢出。

代码

#include <bits/stdc++.h>
using ll = long long;
using namespace std;
const ll MAXN = 1e18;
int main() {
int n; cin >> n;
ll a[n] = {};
for (int i = 0; i < n; i++)
cin >> a[i];
if (count(a, a + n, 0)) {
cout << 0 << "\n";
return 0;
}
ll ans = 1;
for (int i = 0; i < n; i++) {
if ((__int128)ans * a[i] > MAXN) {
cout << -1 << "\n";
return 0;
}
ans *= a[i];
}
cout << ans << "\n";
}

题解三

如果能由下一个积除以 $a_i$ 得到现在的积说明不会发生溢出,但是这个方法需要用 $unsigned\ long\ long$ 才行。

代码

#include <bits/stdc++.h>
using ull = unsigned long long;
using namespace std;
const ull MAXN = 1e18;
int main() {
int n; cin >> n;
ull a[n] = {};
for (int i = 0; i < n; i++)
cin >> a[i];
if (count(a, a + n, 0)) {
cout << 0 << "\n";
return 0;
}
ull ans = 1;
for (int i = 0; i < n; i++) {
ull next = ans * a[i];
if (next / a[i] != ans or next > MAXN) {
cout << -1 << "\n";
return 0;
}
ans *= a[i];
}
cout << ans << "\n";
}

题解四

使用 python 中自带的大数运算。

代码

def main():
N = int(input())
A = list(map(int, input().split())) if 0 in A:
print(0)
return ans = 1
for a in A:
ans *= a
if ans > int(1e18):
print(-1)
return print(ans) main()

C - Multiplication 3

题意

$a$ 为整数,$b$ 为保留小数点后两位的小数,计算 $a \times b$ 。($0≤a≤10^{15}, 0≤ b < 10$)

题解

把 $b$ 转化为整数再计算。

代码

#include <bits/stdc++.h>
using ll = long long;
using namespace std;
int main() {
ll a; string s; cin >> a >> s;
s.erase(1, 1);
ll b = stoll(s);
cout << a * b / 100;
}

D - Div Game

题意

给出一个正整数 $n$,每次操作可以选择一个正整数 $z$,要求:

  • $z = p^e$,$p$ 为正素数,$e$ 为正数
  • $z$ 整除 $n$
  • $z$ 不同于任一之前选择的 $z$
  • 如果以上条件满足,$n = \frac{n}{z}$

找出最多可以进行多少次操作。

题解

找出每个质因数的个数,依次减去 $1,2,3...$ 即可。

代码

#include <bits/stdc++.h>
using ll = long long;
using namespace std;
int main() {
ll n; cin >> n;
map<ll, ll> mp;
for (ll i = 2; i * i <= n; i++) {
while (n % i == 0) {
++mp[i];
n /= i;
}
}
if (n != 1) ++mp[n];
ll ans = 0;
for (auto i : mp) {
for (int j = 1; j <= i.second; j++) {
i.second -= j;
++ans;
}
}
cout << ans << "\n";
}

E - Count Median

题意

有 $n$ 个数 $x_1,x_2,...,x_n$,$a_i≤x_i≤b_i$,找出中值 $x_{mid}$ 可能的值的个数。

  • 中值为将所有 $x_i$ 排序,位于中间的 $x_i$
  • 如果 $n$ 为奇数,中值为 $x_{(n+1)/2}$
  • 如果 $n$ 为偶数,中值为 $(x_{n/2} + x_{n/2 + 1}) / 2$

题解

中值的最小值为 $a_i$ 的中值,最大值为 $b_i$ 的中值,中值的个数即:$b_{mid} - a_{mid} + 1$ 。

代码

#include <bits/stdc++.h>
using namespace std;
int main() {
int n; cin >> n;
int a[n] = {}, b[n] = {};
for (int i = 0; i < n; i++)
cin >> a[i] >> b[i];
sort(a, a + n);
sort(b, b + n);
int mi = 0, mx = 0;
if (n & 1) {
mi = a[n / 2];
mx = b[n / 2];
} else {
mi = a[n / 2 - 1] + a[n / 2];
mx = b[n / 2 - 1] + b[n / 2];
}
cout << mx - mi + 1;
}

F - Knapsack for All Subsets

题意

有 $n$ 个数 $a_1,a_2,...,a_n$,计算 ${1,2,...,n}$ 的 $2^n - 1$ 个非空子集有多少子集作为下标求和可以得到 $s$ 。

题解

$dp_i$ 表示和为 $i$ 的集合共有多少个。

每次添加一个数 $x$,会产生两种变化:

  • $x$ 与 $dp_i$ 中的每个集合构成的新集合都可以构成 $i + x$:$dp_{i + x}\ +=\ dp_i$
  • $x$ 与 $dp_i$ 中的每个集合构成了一个包含原先集合的新集合:$dp_i\ *=\ 2$

代码

#include <bits/stdc++.h>
using namespace std;
const int mod = 998244353;
int dp[6010];
int main() {
int n, s; cin >> n >> s;
dp[0] = 1;
for (int i = 0; i < n; i++) {
int x; cin >> x;
for (int j = s; j >= 0; j--) {
(dp[j + x] += dp[j]) %= mod;
(dp[j] *= 2) %= mod;
}
}
cout << dp[s] << "\n";
}

AtCoder Beginner Contest 169的更多相关文章

  1. AtCoder Beginner Contest 169 题解

    AtCoder Beginner Contest 169 题解 这场比赛比较简单,证明我没有咕咕咕的时候到了! A - Multiplication 1 没什么好说的,直接读入两个数输出乘积就好了. ...

  2. AtCoder Beginner Contest 100 2018/06/16

    A - Happy Birthday! Time limit : 2sec / Memory limit : 1000MB Score: 100 points Problem Statement E8 ...

  3. AtCoder Beginner Contest 052

    没看到Beginner,然后就做啊做,发现A,B太简单了...然后想想做完算了..没想到C卡了一下,然后还是做出来了.D的话瞎想了一下,然后感觉也没问题.假装all kill.2333 AtCoder ...

  4. AtCoder Beginner Contest 053 ABCD题

    A - ABC/ARC Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement Smeke has ...

  5. AtCoder Beginner Contest 136

    AtCoder Beginner Contest 136 题目链接 A - +-x 直接取\(max\)即可. Code #include <bits/stdc++.h> using na ...

  6. AtCoder Beginner Contest 137 F

    AtCoder Beginner Contest 137 F 数论鬼题(虽然不算特别数论) 希望你在浏览这篇题解前已经知道了费马小定理 利用用费马小定理构造函数\(g(x)=(x-i)^{P-1}\) ...

  7. AtCoder Beginner Contest 076

    A - Rating Goal Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement Takaha ...

  8. AtCoder Beginner Contest 079 D - Wall【Warshall Floyd algorithm】

    AtCoder Beginner Contest 079 D - Wall Warshall Floyd 最短路....先枚举 k #include<iostream> #include& ...

  9. AtCoder Beginner Contest 064 D - Insertion

    AtCoder Beginner Contest 064 D - Insertion Problem Statement You are given a string S of length N co ...

随机推荐

  1. 深入理解Go Context

    目录 emptyCtx类型 cancelCtx类型 timerCtx类型 valueCtx类型 在Go语言并发编程中,用一个goroutine来处理一个任务,而它又会创建多个goroutine来负责不 ...

  2. LeetCode105 从前序和中序序列构造二叉树

    题目描述: 根据一棵树的前序遍历与中序遍历构造二叉树. 注意:你可以假设树中没有重复的元素. 例如,给出 前序遍历 preorder = [3,9,20,15,7] 中序遍历 inorder = [9 ...

  3. 剑指offer 面试题10.2:青蛙变态跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 编程思想 因为n级台阶,第一步有n种跳法:跳1级.跳2级.到跳n级跳1级,剩下 ...

  4. Hash Tables and Hash Functions

    Reference: Compuer science Introduction: This computer science video describes the fundamental princ ...

  5. 万字长文爆肝 DNS 协议!

    试想一个问题,我们人类可以有多少种识别自己的方式?可以通过身份证来识别,可以通过社保卡号来识别,也可以通过驾驶证来识别,尽管我们有多种识别方式,但在特定的环境下,某种识别方法可能比另一种方法更为适合. ...

  6. kill 指令的执行原理

    kill 指令有两种写法 " kill query + 线程 id "." kill connection(可缺省) + 线程 id ".分别表示关闭指定线程正 ...

  7. 【Linux】dlopen failed: /lib/lsiRAID.so: cannot open shared object file: No such file or directory

    遇到这个问题,首先第一反应,是看其他的服务器中是否有这个库文件,如果有的话直接cp过来一份就行 但是检查发现,其他的系统中也不存在lsiRAID.so这个库文件,很神奇.. 但是看日志持续报错,查看s ...

  8. linux下的命令自动补齐增强

    linux 7 下 安装 bash-completion 可以实现命令的参数的自动补齐

  9. 04. struts2中Result配置的各种视图转发类型

    概述 <action name="helloworld" class="com.liuyong666.action.HelloWorldAction"&g ...

  10. 使用Python对MySQL数据库插入二十万条数据

    1.当我们测试的时候需要大量的数据的时候,往往需要我们自己造数据,一条一条的加是不现实的,这时候就需要使用脚本来批量生成数据了. import pymysql import random import ...