有n个农场,编号1~N,农场里奶牛将去X号农场。这N个农场之间有M条单向路(注意),通过第i条路将需要花费Ti单位时间。选择最短时间的最优路径来回一趟,花费在去的路上和返回农场的这些最优路径的最长时间是多少?
思路:计算出每头牛去X并且回来的最短路径所需要的时间,然后求出这n-1个农场的牛的最长时间即可,两次运用dijkstra;
1 计算回来的时间:以X为源点,求出源点到各个农场的最短路径;
2 计算去的时间:将路径反转,在用一次djk,求源点到农场的最短路径(实则求牛去X的最短路径);
3 取两次和求最大值;

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input

Line 1: Three space-separated integers, respectively: NM, and X 
Lines 2..M+1: Line i+1 describes road i with three space-separated integers: AiBi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

Output

Line 1: One integer: the maximum of time any one cow must walk.

Sample Input

4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3

Sample Output

10

Hint

Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.
 

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
int n,m,x,minn,k,ans=0;
int dp[1005][1005];
int dis[1005],vis[1005],dis2[1005];
const int inf=99999999;
/*dijkstrak算法*/
void djk(int x)
{
for(int i=1;i<=n;i++)
vis[i]=0;
vis[x]=1;
for(int i=1;i<=n;i++)//记录点i到x的距离
dis[i]=dp[x][i];
for(int i=1;i<=n;i++)
{
minn=inf;
for(int j=1;j<=n;j++)//两个农场之间取最短的路径
{
if(!vis[j]&&dis[j]<minn)
{
minn=dis[j];
k=j;
}
}
vis[k]=1;
for(int j=1;j<=n;j++)
{
if(!vis[j]&&dis[j]>dis[k]+dp[k][j])
dis[j]=dis[k]+dp[k][j];
}
}
}
int main()
{
while(scanf("%d %d %d",&n,&m,&x)!=EOF)//n头牛,m个例子,终点x;
{
for(int i=0;i<=n;i++)//这里i的范围要取小于n,如果取小于1005z则会runtime error
{//重置数组
for(int j=0;j<=n;j++)
  {
if(i==j)
dp[i][j]=0;//从i到i距离为0,else为inf;
   else
dp[i][j]=inf;
}
}
for(int i=0;i<m;i++)
{
int u,v,w;
scanf("%d %d %d",&u,&v,&w);
if(dp[u][v]>w)
dp[u][v]=w;
}
djk(x);
for(int i=1;i<=n;i++)
dis2[i]=dis[i];//记录distant函数之后的dis的数据 for(int i=1;i<=n;i++)//交换地图,路还是以前的路,只是起点和终点换了一下而已
{
for(int j=i+1;j<=n;j++)
{
int tem;
tem=dp[j][i];
dp[j][i]=dp[i][j];
dp[i][j]=tem;
}
}
djk(x);
for(int i=1;i<=n;i++)
{
ans=max(ans,dis2[i]+dis[i]);
}
printf("%d\n",ans);
}
}

B - B Silver Cow Party (最短路+转置)的更多相关文章

  1. POJ3268 Silver Cow Party(dijkstra+矩阵转置)

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15156   Accepted: 6843 ...

  2. POJ 3268 Silver Cow Party 最短路

    原题链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total ...

  3. POJ3268 Silver Cow Party —— 最短路

    题目链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total ...

  4. POJ 3268 Silver Cow Party 最短路—dijkstra算法的优化。

    POJ 3268 Silver Cow Party Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbe ...

  5. poj 3268 Silver Cow Party (最短路算法的变换使用 【有向图的最短路应用】 )

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13611   Accepted: 6138 ...

  6. (poj)3268 Silver Cow Party 最短路

    Description One cow ≤ N ≤ ) conveniently numbered ..N ≤ X ≤ N). A total of M ( ≤ M ≤ ,) unidirection ...

  7. poj 3268 Silver Cow Party(最短路dijkstra)

    描述: One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the bi ...

  8. TZOJ 1693 Silver Cow Party(最短路+思维)

    描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big ...

  9. Silver Cow Party(最短路,好题)

    Silver Cow Party Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Su ...

随机推荐

  1. 多年经验,教你写出最惊艳的 Markdown 高级用法

    点赞再看,养成习惯,微信搜索[高级前端进阶]关注我. 本文 GitHub https://github.com/yygmind 已收录,有一线大厂面试完整考点和系列文章,欢迎 Star. 最近在学习的 ...

  2. 基于CefSharp开发(七)浏览器收藏夹菜单

    一.Edge收藏夹菜单分析 如下图所示为Edge收藏夹菜单, 点击收藏夹菜单按钮(红框部分)弹出收藏夹菜单窗体,窗体中包含工具栏(绿框部分)和树型菜单(黄框部分) 工具栏按钮功能分别为添加当前网页到根 ...

  3. Docker PHP 扩展配置

    # PHP 容器配置 # 从官方基础版本构建 FROM php:7.2-fpm # 官方版本默认安装扩展: # Core, ctype, curl # date, dom # fileinfo, fi ...

  4. jxl解析多个excel工作表-java代码

    @Override public ResultBean txImportDqKpi(String filePath) { ResultBean rb = new ResultBean(); int s ...

  5. 【C++】《Effective C++》第二章

    第二章 构造/析构/赋值运算 条款05:了解C++默默编写并调用哪些函数 默认函数 一般情况下,编译器会为类默认合成以下函数:default构造函数.copy构造函数.non-virtual析构函数. ...

  6. 剑指offer 面试题2:实现Singleton模式

    转自:https://blog.csdn.net/liang19890820/article/details/61615495 Singleton 的头文件(懒汉式/饿汉式公用): // single ...

  7. 串口使用Pipeline时诡异的ReadOnlySequence问题

    借鉴之前的Pipeline的操作方式,现在目标是给串口读取操作也使用上Pipeline.稍微改造一下,以下代码可以直接运行. 协议为使用连续的4个0XFF作为结尾,没有头标志.数据总长为68位定长. ...

  8. 【Linux】reverse mapping checking getaddrinfo for XXX.XXXX.com failed - POSSIBLE BREAKIN ATTEMPT!

    ------------------------------------------------------------------------------------------------- | ...

  9. 转 8 jmeter之集合点

    8 jmeter之集合点   集合点:集合点用以同步虚拟用户,以便恰好在同一时刻执行任务.在测试计划中,可能会要求系统能够承受1000 人同时提交数据,在LoadRunner 中可以通过在提交数据操作 ...

  10. Linux日志文件(常见)及其功能

    日志文件是重要的系统信息文件,其中记录了许多重要的系统事件,包括用户的登录信息.系统的启动信息.系统的安全信息.邮件相关信息.各种服务相关信息等.这些信息有些非常敏感,所以在 Linux 中这些日志文 ...