[矩阵乘法]裴波拉契数列III
[
矩
阵
乘
法
]
裴
波
拉
契
数
列
I
I
I
[矩阵乘法]裴波拉契数列III
[矩阵乘法]裴波拉契数列III
Description
求数列f[n]=f[n-1]+f[n-2]+1的第N项.f[1]=1,f[2]=1.
Input
n(1<n<231-1)
Output
一个数为裴波拉契数列的第n项mod 9973;
Sample Input
12345
Sample Output
8932
题目解析
对于为什么用矩阵乘法来做,详见博客斐波那契数列II
我们考虑矩阵
⊏
f
[
n
−
2
]
,
f
[
n
−
1
]
,
1
⊐
\sqsubset f[n - 2] , f[n - 1] , 1\sqsupset
⊏f[n−2],f[n−1],1⊐并利用斐波那契数列的递推关系来得到式子
⊏
f
[
n
]
,
f
[
n
−
1
]
,
1
⊐
=
⊏
f
[
n
−
2
]
+
f
[
n
−
1
]
+
1
,
f
[
n
−
1
]
,
1
⊐
\sqsubset f[n] , f[n - 1] , 1\sqsupset = \sqsubset f[n - 2] + f[n - 1] + 1, f[n - 1], 1\sqsupset
⊏f[n],f[n−1],1⊐=⊏f[n−2]+f[n−1]+1,f[n−1],1⊐
然后可以构造出一个
3
∗
3
3 * 3
3∗3的矩阵
T
T
T
∣
0
1
0
1
1
0
0
1
1
∣
\begin{vmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ \end{vmatrix}
∣∣∣∣∣∣010111001∣∣∣∣∣∣
然后可以通过
⊏
f
[
1
]
,
f
[
2
]
,
1
⊐
∗
T
=
⊏
f
[
2
]
,
f
[
3
]
,
1
⊐
\sqsubset f[1] , f[2] , 1\sqsupset * T = \sqsubset f[2] , f[3], 1 \sqsupset
⊏f[1],f[2],1⊐∗T=⊏f[2],f[3],1⊐来实现代码了
Code
#include <cmath>
#include <cstdio>
#include <iostream>
using namespace std;
int nt;
const int MOD = 9973;
struct matrix
{
int n, m;
int t[10][10];
}t1, t2, t3;
matrix operator *(matrix t, matrix r)
{
matrix c;
c.n = t.n, c.m = r.m;
for (int i = 1; i <= c.n; ++ i)
for (int j = 1; j <= c.m; ++ j)
c.t[i][j]=0;
for (int k = 1; k <= t.m; ++ k)
for (int i = 1; i <= t.n; ++ i)
for (int j = 1; j <= r.m; ++ j)
c.t[i][j] = (c.t[i][j] + t.t[i][k] * r.t[k][j] % MOD) % MOD;
return c;
}
void rt (int k)
{
if (k == 1)
{
t2 = t1;
return;
}
rt (k / 2);
t2 = t2 * t2;
if (k & 1) t2 = t2 * t1;
}
int main()
{
scanf ("%d", &nt);
if (nt == 1)
{
printf ("1");
return 0;
}
t3.n = 1;
t1.n = t1.m = t3.m = 3;
t1.t[1][1] = 0, t1.t[1][2] = 1, t1.t[1][3] = 0;
t1.t[2][1] = 1, t1.t[2][2] = 1, t1.t[2][3] = 0;
t1.t[3][1] = 0, t1.t[3][2] = 1, t1.t[3][3] = 1;
t3.t[1][1] = t3.t[1][2] = t3.t[1][3] = 1;
rt (nt - 1);
t3 = t3 * t2;
printf ("%d", t3.t[1][1]);
return 0;
}
[矩阵乘法]裴波拉契数列III的更多相关文章
- [矩阵乘法]裴波拉契数列II
[ 矩 阵 乘 法 ] 裴 波 拉 契 数 列 I I [矩阵乘法]裴波拉契数列II [矩阵乘法]裴波拉契数列II Description 形如 1 1 2 3 5 8 13 21 34 55 89 ...
- [矩阵乘法]斐波那契数列IV
[ 矩 阵 乘 法 ] 裴 波 拉 契 数 列 I V [矩阵乘法]裴波拉契数列IV [矩阵乘法]裴波拉契数列IV Description 求数列f[n]=f[n-2]+f[n-1]+n+1的第N项, ...
- 浅谈矩阵加速——以时间复杂度为O(log n)的算法实现裴波那契数列第n项及前n之和使用矩阵加速法的优化求法
首先请连矩阵乘法乘法都还没有了解的同学简单看一下这篇博客: https://blog.csdn.net/weixin_44049566/article/details/88945949 首先直接暴力求 ...
- 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...
- 关于斐波拉契数列(Fibonacci)
斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10 ...
- 剑指offer-第二章算法之斐波拉契数列(青蛙跳台阶)
递归与循环 递归:在一个函数的内部调用这个函数. 本质:把一个问题分解为两个,或者多个小问题(多个小问题相互重叠的部分,会存在重复的计算) 优点:简洁,易于实现. 缺点:时间和空间消耗严重,如果递归调 ...
- 剑指offer三: 斐波拉契数列
斐波拉契数列是指这样一个数列: F(1)=1; F(2)=1; F(n)=F(n-1)+F(n); public class Solution { public int Fibonacci(int n ...
- e8_4输出菲波拉契数列的前10项
program fbnq;{输出菲波拉契数列的前10项} var a:..] of integer; i:integer; begin a[]:=; a[]:=; do a[i]:=a[i-]+a[i ...
- 剑指offer-面试题9.斐波拉契数列
题目一:写一个函数,输入n,求斐波拉契数列的第n项. 斐波拉契数列的定义如下: { n=; f(n)={ n=; { f(n-)+f(n-) n>; 斐波拉契问题很明显我们会想到用递归来解决: ...
随机推荐
- Clean Code of JavaScript
Clean Code of JavaScript 代码简洁之道 JavaScript 版 https://github.com/ryanmcdermott/clean-code-javascript ...
- HTML5 Server-Sent Events
HTML5 Server-Sent Events SSE demo https://www.w3schools.com/html/tryit.asp?filename=tryhtml5_sse htt ...
- nodejs 显示进度条插件
ora 显示loading.. progress 进度条 progress var ProgressBar = require("progress"); var bar = new ...
- NGK算力生态建设者狂欢!SPC之后又有VAST!
想致富,先挖矿.这句话已经成为了币圈的一句名言.挖矿一词始终贯穿着区块链以及数字加密领域. 据小道消息透露,NGK官最近将会推出两款挖矿产品---SPC星空币以及其子币VAST维萨币. 下面笔者就来一 ...
- java初学者必看之构造方法详细解读
java初学者必看之构造方法详细解读 构造方法是专门用来创建对象的方法,当我们通过关键字new来创建对象时,其实就是在调用构造方法. 格式 public 类名称(参数类型 参数名称){ 方法体 } 注 ...
- Kubernetes和docker----1.开始使用k8s和docker
开始使用Kubernetes和docker docker命令 运行一个容器 docker run busybox echo "Hello world" 构建容器镜像 docker ...
- 【秒懂音视频开发】02_Windows开发环境搭建
音视频开发库的选择 每个主流平台基本都有自己的音视频开发库(API),用以处理音视频数据,比如: iOS:AVFoundation.AudioUnit等 Android:MediaPlayer.Med ...
- Mac创建Root用户
1.打开Mac终端管理工具 前往-实用工具-终端 2.用命令的形式创建账户 sudo passwd root 3.输入当前登录用户密码 4.输入root用户密码并验证
- 剑指 Offer 33. 二叉搜索树的后序遍历序列 + 根据二叉树的后序遍历序列判断对应的二叉树是否存在
剑指 Offer 33. 二叉搜索树的后序遍历序列 Offer_33 题目详情 题解分析 本题需要注意的是,这是基于一颗二叉排序树的题目,根据排序二叉树的定义,中序遍历序列就是数据从小到大的排序序列. ...
- POJ-1321棋盘问题(简单深搜)
简单搜索step1 POJ-1321 这是第一次博客,题目也很简单,主要是注意格式书写以及常见的快速输入输出和文件输入输出的格式. 递归的时候注意起始是从(-1,-1)开始,然后每次从下一行开始递归. ...