C#封装YOLOv4算法进行目标检测

概述

官网:https://pjreddie.com/darknet/

Darknet:【Github】

C#封装代码:【Github】

YOLO: 是实现实时物体检测的系统,Darknet是基于YOLO的框架

采用C#语言对 YOLOv4 目标检测算法封装,将模型在实际应用系统中落地,实现模型在线远程调用。

环境准备

本章只讲解如何对YOLOv4封装进行详解,具体环境安装过程不做介绍

查看你的GPU计算能力是否支持 >= 3.0:【点击查看】

Windows运行要求

我所使用的环境

  • 系统版本:Windows 10 专业版
  • 显卡:GTX 1050 Ti
  • CMake版本:3.18.2
  • CUDA版本:10.1
  • OpenCV版本:4.4.0
  • cuDNN版本:10.1
  • MSVC 2017/2019: Visual Studio 2019

程序代码准备

源代码下载

下载地址:【Darknet】

使用Git

  1. git clone https://github.com/AlexeyAB/darknet
  2. cd darknet

代码结构

将YOLOv4编译为DLL

详细教程:【点击查看】,这个教程描述的很详细。

进入 darknet\build\darknet 目录,打开解决方案 yolo_cpp_dll.sln

设置Windows SDK版本和平台工具集为当前系统安装版本

设置Release和x64

然后执行以下操作:Build-> Build yolo_cpp_dll

  1. 已完成生成项目“yolo_cpp_dll.vcxproj”的操作。
  2. ========== 生成: 成功 1 个,失败 0 个,最新 0 个,跳过 0 ==========

在打包DLL的过程中可能遇到如下问题

  1. C1041
  2. 无法打开程序数据库“D:\代码管理\C\darknet\build\darknet\x64\DLL_Release\vc142.pdb”;如果要将多个 CL.EXE 写入同一个 .PDB 文件,请使用 /FS yolo_cpp_dll C:\Users\administrator\AppData\Local\Temp\tmpxft_00005db0_00000000-6_dropout_layer_kernels.compute_75.cudafe1.cpp 1
  1. MSB3721
  2. 命令“"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin\nvcc.exe" -gencode=arch=compute_30,code=\"sm_30,compute_30\" -gencode=arch=compute_75,code=\"sm_75,compute_75\" --use-local-env -ccbin "C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.27.29110\bin\HostX86\x64" -x cu -IC:\opencv\build\include -IC:\opencv_3.0\opencv\build\include -I..\..\include -I..\..\3rdparty\stb\include -I..\..\3rdparty\pthreads\include -I"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\include" -I"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\include" -I\include -I\include -I"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\include" --keep-dir x64\Release -maxrregcount=0 --machine 64 --compile -cudart static -DCUDNN_HALF -DCUDNN -DGPU -DLIB_EXPORTS -D_TIMESPEC_DEFINED -D_SCL_SECURE_NO_WARNINGS -D_CRT_SECURE_NO_WARNINGS -DWIN32 -DNDEBUG -D_CONSOLE -D_LIB -D_WINDLL -D_MBCS -Xcompiler "/EHsc /W3 /nologo /O2 /Fdx64\DLL_Release\vc142.pdb /Zi /MD " -o x64\DLL_Release\dropout_layer_kernels.cu.obj "D:\darknet\src\dropout_layer_kernels.cu"”已退出,返回代码为 2 yolo_cpp_dll C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\MSBuild\Microsoft\VC\v160\BuildCustomizations\CUDA 10.1.targets 757

解决方法

在VS 2019 工具》选项》项目和解决方案》生成并运行 中最大并行项目生成数设为 1

在VS 2019 项目-》属性-》配置属性-》常规 将Windows SDK版本设置为系统当前版本即可

封装YOLOv4编译后的DLL

  • 1、进入 darknet\build\darknet\x64 目录,将 pthreadGC2.dllpthreadVC2.dll 拷贝到项目 Dll 文件夹
  • 2、将编译后的YOLOv4 DLL文件拷贝到项目 Dll 文件夹
  • 3、进入 darknet\build\darknet\x64\cfg 目录,将 yolov4.cfg 拷贝到项目 Cfg 文件夹
  • 4、进入 darknet\build\darknet\x64\data 目录,将 coco.names 拷贝到项目 Data 文件夹
  • 5、下载 yolov4.weights 权重文件 拷贝到 Weights 文件夹,文件245 MB 【点击下载】

项目文件

代码下载:【Github】

  • YoloWrapper - YOLOv4封装项目

    • Cfg - 配置文件夹
    • Data - label文件夹
    • Dll - YOLOv4 编译后的DLL文件夹
    • Weights - YOLOv4 权重文件夹
    • BboxContainer.cs
    • BoundingBox.cs
    • YoloWrapper.cs - 封装主文件,调用 YOLOv4 的动态链接库
  • YoloWrapperConsole - 调用封装DLL控制台程序
    • Program.cs - 控制台主程序,调用 YOLOv4 封装文件

代码

YOLOv4封装项目

YoloWrapper.cs - 封装主文件,调用 YOLOv4 的动态链接库

  1. using System;
  2. using System.Runtime.InteropServices;
  3. namespace YoloWrapper
  4. {
  5. public class YoloWrapper : IDisposable
  6. {
  7. private const string YoloLibraryName = @"\Dlls\yolo_cpp_dll.dll";
  8. [DllImport(YoloLibraryName, EntryPoint = "init")]
  9. private static extern int InitializeYolo(string configurationFilename, string weightsFilename, int gpu);
  10. [DllImport(YoloLibraryName, EntryPoint = "detect_image")]
  11. private static extern int DetectImage(string filename, ref BboxContainer container);
  12. [DllImport(YoloLibraryName, EntryPoint = "detect_mat")]
  13. private static extern int DetectImage(IntPtr pArray, int nSize, ref BboxContainer container);
  14. [DllImport(YoloLibraryName, EntryPoint = "dispose")]
  15. private static extern int DisposeYolo();
  16. public YoloWrapper(string configurationFilename, string weightsFilename, int gpu)
  17. {
  18. InitializeYolo(configurationFilename, weightsFilename, gpu);
  19. }
  20. public void Dispose()
  21. {
  22. DisposeYolo();
  23. }
  24. public BoundingBox[] Detect(string filename)
  25. {
  26. var container = new BboxContainer();
  27. var count = DetectImage(filename, ref container);
  28. return container.candidates;
  29. }
  30. public BoundingBox[] Detect(byte[] imageData)
  31. {
  32. var container = new BboxContainer();
  33. var size = Marshal.SizeOf(imageData[0]) * imageData.Length;
  34. var pnt = Marshal.AllocHGlobal(size);
  35. try
  36. {
  37. Marshal.Copy(imageData, 0, pnt, imageData.Length);
  38. var count = DetectImage(pnt, imageData.Length, ref container);
  39. if (count == -1)
  40. {
  41. throw new NotSupportedException($"{YoloLibraryName} has no OpenCV support");
  42. }
  43. }
  44. catch (Exception exception)
  45. {
  46. return null;
  47. }
  48. finally
  49. {
  50. Marshal.FreeHGlobal(pnt);
  51. }
  52. return container.candidates;
  53. }
  54. }
  55. }

BboxContainer.cs

  1. using System.Runtime.InteropServices;
  2. namespace YoloWrapper
  3. {
  4. [StructLayout(LayoutKind.Sequential)]
  5. public struct BboxContainer
  6. {
  7. [MarshalAs(UnmanagedType.ByValArray, SizeConst = 1000)]
  8. public BoundingBox[] candidates;
  9. }
  10. }

BoundingBox.cs

  1. using System;
  2. using System.Runtime.InteropServices;
  3. namespace YoloWrapper
  4. {
  5. [StructLayout(LayoutKind.Sequential)]
  6. public struct BoundingBox
  7. {
  8. public UInt32 x, y, w, h;
  9. public float prob;
  10. public UInt32 obj_id;
  11. public UInt32 track_id;
  12. public UInt32 frames_counter;
  13. public float x_3d, y_3d, z_3d;
  14. }
  15. }

调用封装DLL控制台程序

BoundingBox.cs

  1. using ConsoleTables;
  2. using System;
  3. using System.Collections.Generic;
  4. using System.IO;
  5. using System.Linq;
  6. using YoloWrapper;
  7. namespace YoloWrapperConsole
  8. {
  9. class Program
  10. {
  11. private const string configurationFilename = @".\Cfg\yolov4.cfg";
  12. private const string weightsFilename = @".\Weights\yolov4.weights";
  13. private const string namesFile = @".\Data\coco.names";
  14. private static Dictionary<int, string> _namesDic = new Dictionary<int, string>();
  15. private static YoloWrapper.YoloWrapper _wrapper;
  16. static void Main(string[] args)
  17. {
  18. Initilize();
  19. Console.Write("ImagePath:");
  20. string imagePath = Console.ReadLine();
  21. var bbox = _wrapper.Detect(imagePath);
  22. Convert(bbox);
  23. Console.ReadKey();
  24. }
  25. private static void Initilize()
  26. {
  27. _wrapper = new YoloWrapper.YoloWrapper(configurationFilename, weightsFilename, 0);
  28. var lines = File.ReadAllLines(namesFile);
  29. for (var i = 0; i < lines.Length; i++)
  30. _namesDic.Add(i, lines[i]);
  31. }
  32. private static void Convert(BoundingBox[] bbox)
  33. {
  34. Console.WriteLine("Result:");
  35. var table = new ConsoleTable("Type", "Confidence", "X", "Y", "Width", "Height");
  36. foreach (var item in bbox.Where(o => o.h > 0 || o.w > 0))
  37. {
  38. var type = _namesDic[(int)item.obj_id];
  39. table.AddRow(type, item.prob, item.x, item.y, item.w, item.h);
  40. }
  41. table.Write(Format.MarkDown);
  42. }
  43. }
  44. }

测试返回结果

Type Confidence X Y Width Height
mouse 0.25446844 1206 633 78 30
laptop 0.5488589 907 451 126 148
laptop 0.51734066 688 455 53 37
laptop 0.48207012 980 423 113 99
person 0.58085686 429 293 241 469
bottle 0.22032459 796 481 43 48
bottle 0.24873751 659 491 32 53
cup 0.5715177 868 453 55 70
bottle 0.29916075 1264 459 31 89
cup 0.2782725 685 503 35 40
cup 0.28154427 740 539 78 44
person 0.94347733 81 199 541 880
person 0.9496539 1187 368 233 155
chair 0.22458112 624 442 45 48
person 0.97528315 655 389 86 100
bottle 0.9407686 1331 436 33 107
bottle 0.9561032 1293 434 37 113
chair 0.4784215 1 347 386 730
cup 0.8945817 822 586 112 69
cup 0.6422996 1265 472 31 72
laptop 0.9833646 802 700 639 216
cup 0.9216428 828 521 115 71
chair 0.88087356 1124 416 111 70
diningtable 0.3222557 531 585 951 472

控制台

C#封装YOLOv4算法进行目标检测的更多相关文章

  1. 【目标检测】基于传统算法的目标检测方法总结概述 Viola-Jones | HOG+SVM | DPM | NMS

    "目标检测"是当前计算机视觉和机器学习领域的研究热点.从Viola-Jones Detector.DPM等冷兵器时代的智慧到当今RCNN.YOLO等深度学习土壤孕育下的GPU暴力美 ...

  2. 目标检测算法(1)目标检测中的问题描述和R-CNN算法

    目标检测(object detection)是计算机视觉中非常具有挑战性的一项工作,一方面它是其他很多后续视觉任务的基础,另一方面目标检测不仅需要预测区域,还要进行分类,因此问题更加复杂.最近的5年使 ...

  3. 第三十五节,目标检测之YOLO算法详解

    Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object de ...

  4. Python实现YOLO目标检测

    作者:R语言和Python学堂 链接:https://www.jianshu.com/p/35cfc959b37c 1. 什么是目标检测? YOLO目标检测的一个示例 啥是目标检测? 拿上图 (用YO ...

  5. Faster-rcnn实现目标检测

      Faster-rcnn实现目标检测 前言:本文浅谈目标检测的概念,发展过程以及RCNN系列的发展.为了实现基于Faster-RCNN算法的目标检测,初步了解了RCNN和Fast-RCNN实现目标检 ...

  6. [目标检测]RCNN系列原理

    1 RCNN 1.1 训练过程 (1) 训练时采用fine-tune方式: 先用Imagenet(1000类)训练,再用PASCAL VOC(21)类来fine-tune.使用这种方式训练能够提高8个 ...

  7. [AI开发]目标检测之素材标注

    算力和数据是影响深度学习应用效果的两个关键因素,在算力满足条件的情况下,为了到达更好的效果,我们需要将海量.高质量的素材数据喂给神经网络,训练出高精度的网络模型.吴恩达在深度学习公开课中提到,在算力满 ...

  8. 利用ImageAI库只需几行python代码超简实现目标检测

    目录 什么是目标检测 目标检测算法 Two Stages One Stage python实现 依赖 安装 使用 附录 什么是目标检测 目标检测关注图像中特定的物体目标,需要同时解决解决定位(loca ...

  9. AI佳作解读系列(五) - 目标检测二十年技术综述

    计算机视觉中的目标检测,因其在真实世界的大量应用需求,比如自动驾驶.视频监控.机器人视觉等,而被研究学者广泛关注.   上周四,arXiv新出一篇目标检测文献<Object Detection ...

随机推荐

  1. 2020-05-21:es底层读写原理?倒排索引原理?

    福哥答案2020-05-21: es不熟悉,答案仅供参考:es写数据过程1.客户端选择一个node发送请求过去,这个node就是coordinating node(协调节点)2.coordinatin ...

  2. Spring Boot 应用程序启动流程分析

    SpringBoot 有两个关键元素: @SpringBootApplicationSpringApplication 以及 run() 方法 SpringApplication 这个类应该算是 Sp ...

  3. Js~对键值对操作

    键值对主要是面向对象语言里的字典,或者叫哈希表,它通过键(key)可以直接访问到值(value),所以它查找的时间复杂度是O(1),即一次查找即可找到目标:在.net里有Dictionary,而在ja ...

  4. 三、HelloWorld

    1.创建Hello.java 文件, 2.输入内容 public class Hello{ //公共类 Hello public static void main(String[] args){ // ...

  5. 震惊!ConcurrentHashMap里面也有死循环,作者留的“彩蛋”?

    JDK BUG 这篇文章,聊一下我最近才知道的一个关于 JDK 8 的 BUG 吧. 首先说一下我是怎么发现这个 BUG 的呢? 大家都知道我对 Dubbo 有一定的关注,前段时间 Dubbo 2.7 ...

  6. 阿里云体验实验室 教你如何《快速搭建LNMP环境》

    ## 体验平台简介 面向开发者和中小企业打造的一站式.全云端的开发平台,打开浏览器就可以开发.调试.上线,所测即所得,并结合无服务器的模式,重新定义云原生时代的研发工作方法论.旨在降低开发者上手成本和 ...

  7. 使用对称加密来加密Spring Cloud Config配置文件

    补充 使用Spring Cloud Config加密功能需要下载JCE扩展,用于生成无限长度的密文.链接:http://www.oracle.com/technetwork/java/javase/d ...

  8. 技术分享丨数据仓库的建模与ETL实践技巧

    摘要:如何搭建数据仓库,在这个过程中都应该遵循哪些方法和原则,项目实践中有哪些技巧. 一.数据仓库的“心脏” 首先来谈谈数据模型.模型是现实世界特征的模拟和抽象,比如地图.建筑设计沙盘,飞机模型等等. ...

  9. 谈谈BUG严重级别(severity)管理

    在软件工程理论中,BUG严重级别(severity)是用于指示软件质量问题导致的负面影响的程度.但在大部分实际的软件开发组织中,对BUG严重级别(severity)的定义和使用常常充斥着大量的争议和分 ...

  10. centos7上借助于xargs快速查询并卸载rpm软件

    在centos上卸载某些软件的时候,如果查询的软件包比较多,可以考虑使用xargs,边查询边卸载 如:下面在查询mysql包时候,将查询结果通过管道传送给xargs,然后使用rpm -e --node ...