面试题 & 真实经历

面试题:在数据量很大的情况下,怎么实现深度分页?

大家在面试时,或者准备面试中可能会遇到上述的问题,大多的回答基本上是分库分表建索引,这是一种很标准的正确回答,但现实总是很骨感,所以面试官一般会追问你一句,现在工期不足,人员不足,该怎么实现深度分页?

这个时候没有实际经验的同学基本麻爪,So,请听我娓娓道来。

惨痛的教训

首先必须明确一点:深度分页可以做,但是深度随机跳页绝对需要禁止。

上一张图:

你们猜,我点一下第142360页,服务会不会爆炸?

MySQLMongoDB数据库还好,本身就是专业的数据库,处理的不好,最多就是慢,但如果涉及到ES,性质就不一样了,我们不得不利用 SearchAfter Api,去循环获取数据,这就牵扯到内存占用的问题,如果当时代码写的不优雅,直接就可能导致内存溢出。

为什么不能允许随机深度跳页

从技术的角度浅显的聊一聊为什么不能允许随机深度跳页,或者说为什么不建议深度分页

MySQL

分页的基本原理:

SELECT * FROM test ORDER BY id DESC LIMIT 10000, 20;

LIMIT 10000 , 20的意思扫描满足条件的10020行,扔掉前面的10000行,返回最后的20行。如果是LIMIT 1000000 , 100,需要扫描1000100 行,在一个高并发的应用里,每次查询需要扫描超过100W行,不炸才怪。

MongoDB

分页的基本原理:

db.t_data.find().limit(5).skip(5);

同样的,随着页码的增大,skip 跳过的条目也会随之变大,而这个操作是通过 cursor 的迭代器来实现的,对于cpu的消耗会非常明显,当页码非常大时且频繁时,必然爆炸。

ElasticSearch

从业务的角度来说,ElasticSearch不是典型的数据库,它是一个搜索引擎,如果在筛选条件下没有搜索出想要的数据,继续深度分页也不会找到想要的数据,退一步讲,假如我们把ES作为数据库来使用进行查询,在进行分页的时候一定会遇到max_result_window 的限制,看到没,官方都告诉你最大偏移量限制是一万。

查询流程:

  1. 如查询第501页,每页10条,客户端发送请求到某节点
  2. 此节点将数据广播到各个分片,各分片各自查询前 5010 条数据
  3. 查询结果返回至该节点,然后对数据进行整合,取出前 5010 条数据
  4. 返回给客户端

由此可以看出为什么要限制偏移量,另外,如果使用 Search After 这种滚动式API进行深度跳页查询,也是一样需要每次滚动几千条,可能一共需要滚动上百万,千万条数据,就为了最后的20条数据,效率可想而知。

再次和产品对线

俗话说的好,技术解决不了的问题,就由业务来解决!

在实习的时候信了产品的邪,必须实现深度分页 + 跳页,如今必须拨乱反正,业务上必须有如下更改:

  • 尽可能的增加默认的筛选条件,如:时间周期,目的是为了减少数据量的展示
  • 修改跳页的展现方式,改为滚动显示,或小范围跳页

滚动显示参考图:

小规模跳页参考图:

通用解决方案

短时间内快速解决的方案主要是以下几点:

  • 必备:对排序字段,筛选条件务必设置好索引
  • 核心:利用小范围页码的已知数据,或者滚动加载的已知数据,减少偏移量
  • 额外:如果遇到不好处理的情况,也可以获取多余的数据,进行一定的截取,性能影响并不大

MySQL

原分页SQL:

# 第一页
SELECT * FROM `year_score` where `year` = 2017 ORDER BY id limit 0, 20; # 第N页
SELECT * FROM `year_score` where `year` = 2017 ORDER BY id limit (N - 1) * 20, 20;

通过上下文关系,改写为:

# XXXX 代表已知的数据
SELECT * FROM `year_score` where `year` = 2017 and id > XXXX ORDER BY id limit 20;

没内鬼,来点干货!SQL优化和诊断 一文中提到过,LIMIT会在满足条件下停止查询,因此该方案的扫描总量会急剧减少,效率提升Max!

ES

方案和MySQL相同,此时我们就可以随用所欲的使用 FROM-TO Api,而且不用考虑最大限制的问题。

MongoDB

方案基本类似,基本代码如下:

相关性能测试:

如果非要深度随机跳页

如果你没有杠过产品经理,又该怎么办呢,没关系,还有一丝丝的机会。

SQL优化 一文中还提到过MySQL深度分页的处理技巧,代码如下:

# 反例(耗时129.570s)
select * from task_result LIMIT 20000000, 10; # 正例(耗时5.114s)
SELECT a.* FROM task_result a, (select id from task_result LIMIT 20000000, 10) b where a.id = b.id; # 说明
# task_result表为生产环境的一个表,总数据量为3400万,id为主键,偏移量达到2000万

该方案的核心逻辑即基于聚簇索引,在不通过回表的情况下,快速拿到指定偏移量数据的主键ID,然后利用聚簇索引进行回表查询,此时总量仅为10条,效率很高。

因此我们在处理MySQLESMongoDB时,也可以采用一样的办法:

  1. 限制获取的字段,只通过筛选条件,深度分页获取主键ID
  2. 通过主键ID定向查询需要的数据

瑕疵:当偏移量非常大时,耗时较长,如文中的 5s

最后

参考文章:MongoDB中文社区

感谢 @程大设计师 为我倾情设计的二维码

如果觉得对你有用的话,不要忘记点个赞啊~

上亿数据怎么玩深度分页?兼容MySQL + ES + MongoDB的更多相关文章

  1. 大数据学习[16]--使用scroll实现Elasticsearch数据遍历和深度分页[转]

    题目:使用scroll实现Elasticsearch数据遍历和深度分页 作者:星爷 出处: http://lxWei.github.io/posts/%E4%BD%BF%E7%94%A8scroll% ...

  2. 上千万或上亿数据(有反复),统计当中出现次数最多的N个数据. C++实现

    上千万或上亿的数据,如今的机器的内存应该能存下.所以考虑採用hash_map/搜索二叉树/红黑树等来进行统计次数. 然后就是取出前N个出现次数最多的数据了,能够用第2题提到的堆机制完毕. #inclu ...

  3. R语言操作mysql上亿数据量(ff包ffbase包和ETLUtils包)

    平时都是几百万的数据量,这段时间公司中了个大标,有上亿的数据量. 现在情况是数据已经在数据库里面了,需要用R分析,但是完全加载不进来内存. 面对现在这种情况,R提供了ff, ffbase , ETLU ...

  4. 30G 上亿数据的超大文件,如何快速导入生产环境?

    Hello,大家好,我是楼下小黑哥~ 如果给你一个包含一亿行数据的超大文件,让你在一周之内将数据转化导入生产数据库,你会如何操作? 上面的问题其实是小黑哥前段时间接到一个真实的业务需求,将一个老系统历 ...

  5. 搭建企业级实时数据融合平台难吗?Tapdata + ES + MongoDB 就能搞定

      摘要:如何打造一套企业级的实时数据融合平台?Tapdata 已经找到了最佳实践,下文将以 Tapdata 的零售行业客户为例,与您分享:基于 ES 和 MongoDB 来快速构建一套企业级的实时数 ...

  6. 网易java高级开发课程 面对上亿数据量,网易用啥技术?

  7. mysql千万级测试1亿数据的分页分析测试

    本文为本人最近利用几个小时才分析总结出的原创文章,希望大家转载,但是要注明出处 http://blog.sina.com.cn/s/blog_438308750100im0e.html 有什么问题可以 ...

  8. [翻译] C# 8.0 新特性 Redis基本使用及百亿数据量中的使用技巧分享(附视频地址及观看指南) 【由浅至深】redis 实现发布订阅的几种方式 .NET Core开发者的福音之玩转Redis的又一傻瓜式神器推荐

    [翻译] C# 8.0 新特性 2018-11-13 17:04 by Rwing, 1179 阅读, 24 评论, 收藏, 编辑 原文: Building C# 8.0[译注:原文主标题如此,但内容 ...

  9. 生产环境zabbix3.2上亿的表数据通过表分区的方式进行历史数据清理

    生产环境zabbix3.2上亿的表数据通过表分区的方式进行历史数据清理 zabbix服务器经常报警io过载,在报警的时候发现是数据库在删除历史数据时耗时较长 数据库积攒了大量的历史数据信息,主要集中在 ...

随机推荐

  1. 这一次搞懂Spring的XML解析原理

    前言 Spring已经是我们Java Web开发必不可少的一个框架,其大大简化了我们的开发,提高了开发者的效率.同时,其源码对于开发者来说也是宝藏,从中我们可以学习到非常优秀的设计思想以及优雅的命名规 ...

  2. navicat 出现 mysql远程连接问题 Lost connection to MySQL server at ‘reading initial communication packet', system error: 0

    今天做服务器上的东西需要看数据库时,突然发现有这个报错,然后自己也查了很多资料 我最后找到一个在my,cnf配置文件中mysqld下加入一条 max_allowed_packet = 500M 也就是 ...

  3. .Net Core踩坑记:读取txt中文乱码

    迁移.net framework的项目,有块读取txt中文转码的问题,普通的不能再普通的代码,想都没想直接copy过去,也没测,结果今天就被坑了.Core是3.1版本,这是原来的代码: string ...

  4. 重识Java8函数式编程

    前言 最近真的是太忙忙忙忙忙了,很久没有更新文章了.最近工作中看到了几段关于函数式编程的代码,但是有点费解,于是就准备总结一下函数式编程.很多东西很简单,但是如果不总结,可能会被它的各种变体所困扰.接 ...

  5. js Date format(日期格式化:yyyy-MM-dd HH:mm:ss.S)

    今天在做日期显示的时候,那个显示格式困扰了很久,各种组件都尝试了,总是不如意,最后自己网上找了一个,然后稍微修改一下,感觉这个Util挺常用的,这里mark一下 Date.prototype.form ...

  6. ODBC 常见数据源配置整理

    目录 1. 简介 1.1 ODBC和JDBC 1.2 ODBC配置工具 1.3 ODBC 数据源连接配置 2. MySQL 数据源配置 2.1 配置步骤 2.2 链接参数配置 3. SQLServer ...

  7. shell 脚本操作informix数据库

    shell 脚本操作informix数据库的简单模板: functionName(){ dbaccess << ! database 库名; sql语句; ! } 栗子1:更新数据 fun ...

  8. linux网络编程-socket(36)

    进程是程序的一次动态执行的过程,进程是短暂的. 一个程序可以对应多个进程,可以打开多个记事本程序,存在多个进程. 线程是进程内部中的控制序列,一个进程至少有一个执行线路. 一个进程可以存在多个线程

  9. Python3-算法-冒泡排序

    冒泡排序 它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来,走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成,这个算法的名字由来是因为越大的元素 ...

  10. 使用docker创建rocketMQ容器

    一.rocketMQ安装 (一)安装NameSrv 1.创建nameSrv数据挂载文件夹 mkdir -p /usr/data/rocketMQ/data/namesrv/logs mkdir -p ...