LINK:梦幻岛宝珠

时隔多日 我再次挑战这道题。还是以失败告终。

我觉得这一道背包真的有点难度 这是一个数量较少 但是价值和体积较大的背包。

通常的01背包 要不就是体积小 要么是价值小 但这道题给了价值和体积都大 说明必然有其他重要的条件。

那就是体积为\(a*2^b\) \(a\leq 10,b\leq 30\)

只有这一个有利用价值的东西 我们无奈的对这个东西进行dp 对b进行分组 然后各个组进行dp.

关键我们如何把这些组给合起来。我想了很久 也翻了好几篇题解。

我终于明白为什么了。这个题 对我来说感觉很困难。

我们要得到容量为m的答案 还是考虑按位枚举背包的大小。

dp[i][j] 表示考虑到了第i为 此时我们背包的容量为\(j\cdot 2^i+m&((1<<i)-1)\)容量为这么多时的价值。

之所以是这个因为我们是从小到大来记录到底拿了多少 考虑到了第i位 对于第i位 我们可能当前没有这么多钱 但是之后高位可能有所以当前就需要存一下这个状态而后面的是我们应该有了这么多的钱用来买了。

所以这样dp一下 可以发现对于j的枚举 最多1000 也可以记一个总量来辅助转移。

这样转移可以保证的是 这是类似于背包的转移 且也不需要开过大的空间。

可以证明这是正确的。

//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 1000000000
#define ld long double
#define pb push_back
#define get(x) x=read()
#define gtc(x) scanf("%s",a+1)
#define gt(x) scanf("%d",&x)
#define put(x) printf("%d\n",x)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define pii pair<int,int>
#define F first
#define S second
#define mk make_pair
#define mod 1000000009
#define RE register
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;char ch=getc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getc();}
return x*f;
}
const int MAXN=1010,maxn=33;
int n,m,mx;
vector<int>w[maxn],v[maxn];
int f[maxn][MAXN],c[maxn];
int main()
{
freopen("1.in","r",stdin);
while(1)
{
get(n);get(m);mx=0;
memset(f,0,sizeof(f));
memset(c,0,sizeof(c));
memset(w,0,sizeof(w));
memset(v,0,sizeof(v));
if(n==-1&&m==-1)break;
rep(1,n,i)
{
int x,y;
get(x);get(y);
int cnt=0;
while(1)
{
if(x&1)break;
x=x>>1;++cnt;
}
w[cnt].pb(x);v[cnt].pb(y);
mx=max(mx,cnt);c[cnt]+=x;
}
rep(0,mx,i)
{
rep(0,(int)(w[i].size())-1,j)
{
for(int k=c[i];k>=w[i][j];--k)
f[i][k]=max(f[i][k],f[i][k-w[i][j]]+v[i][j]);
}
}
int len=0;
while(m>>len)++len;--len;
//cout<<len<<endl;
rep(1,len,i)
{
c[i]+=(c[i-1]+1)/2;
//cout<<c[i]<<endl;
for(int j=c[i];j>=0;--j)
for(int k=0;k<=j;++k)
f[i][j]=max(f[i][j],f[i][j-k]+f[i-1][min(c[i-1],(k<<1)+((m>>(i-1))&1))]);
}
put(f[len][1]);
}
return 0;
}

虽然写完了 但是这道题 还需要再细细揣摩其中dp合并的思想。

luogu 3188 [HNOI2007]梦幻岛宝珠的更多相关文章

  1. [BZOJ 1190][HNOI2007]梦幻岛宝珠

    1190: [HNOI2007]梦幻岛宝珠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1057  Solved: 611[Submit][Stat ...

  2. 【BZOJ1190】[HNOI2007]梦幻岛宝珠 分层背包DP

    [BZOJ1190][HNOI2007]梦幻岛宝珠 Description 给你N颗宝石,每颗宝石都有重量和价值.要你从这些宝石中选取一些宝石,保证总重量不超过W,且总价值最大为,并输出最大的总价值. ...

  3. BZOJ 1190 [HNOI2007]梦幻岛宝珠(背包)

    1190: [HNOI2007]梦幻岛宝珠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1385  Solved: 798[Submit][Stat ...

  4. 【题解】 bzoj1190: [HNOI2007]梦幻岛宝珠 (动态规划)

    bzoj1190,懒得复制,戳我戳我 Solution: 这道题其实是一个背包(分组背包),但是由于数字比较大,就要重新构造dp式子.啃了三天才懂. \(dp[i][j]\)表示背包容积为\(j*2^ ...

  5. 1190: [HNOI2007]梦幻岛宝珠 - BZOJ

    Description 给你N颗宝石,每颗宝石都有重量和价值.要你从这些宝石中选取一些宝石,保证总重量不超过W,且总价值最大为,并输出最大的总价值. 数据范围:N<=100;W<=2^30 ...

  6. [HNOI2007]梦幻岛宝珠(背包)

    给你N颗宝石,每颗宝石都有重量和价值.要你从这些宝石中选取一些宝石,保证总重量不超过W,且总价值最大为,并输出最大的总价值.数据范围:N<=100;W<=2^30,并且保证每颗宝石的重量符 ...

  7. [HNOI2007]梦幻岛宝珠

    题解: 一道比较好的题目 首先比较显然的就是我们要按照a*2^b的b的顺序来枚举 那么状态f[i][j]表示当前在b,用了a*2^b 刚开始没想到怎么不同层之间搞 看了题解发现非常简单 由于每一层到最 ...

  8. BZOJ.1190.[HNOI2007]梦幻岛宝珠(分层背包DP)

    题目链接 把重量表示为\(a\times2^b\)的形式,然后按\(b\)排序. 从高到低枚举每一位,\(f[i]\)表示当前位容量为\(i\)时的最大价值(容量即\(a\times2^{bit}\) ...

  9. [HNOI2007]梦幻岛宝珠 「套路:分层 $DP$」

    显然直接 \(01\) 背包会超时并且超空间 套路:分层 \(DP\) 「考虑将每个子结构看作一层(也就是包含了不止 \(1\) 个物品的信息),并且大层不会对小层造成影响,可以考虑先进行每一层的自我 ...

随机推荐

  1. html/css解决inline-block内联元素间隙的多种方法总汇

    序 display有几种属性:inline是内联对象,比如<a/> . <span/>标签等,可以“堆在一起”显示,宽高由内容决定,不能设置:block是块对象,比如<d ...

  2. 使用Python编写的对拍程序

    简介 支持数据生成程序模式, 只要有RE或者WA的数据点, 就会停止 支持数据文件模式, 使用通配符指定输入文件, 将会对拍所有文件 结束后将会打印统计信息 第一次在某目录执行,将会通过交互方式获取配 ...

  3. 【转】Web端测试点整理

    版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/qq_24373725/article/d ...

  4. Virtual DOM 真的比操作原生 DOM 快吗?

    附上尤大的回答链接链接:https://www.zhihu.com/question/31809713/answer/53544875

  5. 操作句柄Handle(7)

    可以将Handle理解成访问对象的一个“句柄”.垃圾回收时对象可能被移动(对象地址发生改变),通过Handle访问对象可以对使用者屏蔽垃圾回收细节. Handle涉及到的相关类的继承关系如下图所示. ...

  6. Markdown 教程之编辑器

    1. Typora 编辑器 Typora 是一款支持实时预览的 Markdown 文本编辑器.它有 OS X.Windows.Linux 三个平台的版本,并且由于仍在测试中,是完全免费的. 2. 安装 ...

  7. PJzhang:python基础入门的7个疗程-seven

    猫宁!!! 参考链接:易灵微课-21天轻松掌握零基础python入门必修课 https://www.liaoxuefeng.com/wiki/1016959663602400 第19天:开源模块 数据 ...

  8. Centos 7 静态IP设置

    1.编辑 ifcfg-eth0 文件,vim 最小化安装时没有被安装,需要自行安装不描述. # vim /etc/sysconfig/network-scripts/ifcfg-eth0 2.修改如下 ...

  9. 自已动手作图搞清楚AVL树

    @ 目录 一.背景 二.平衡二分搜索树---AVL树 2.1 AVL树的基本概念 结点 高度 平衡因子 2.2 AVL树的验证 三.旋转操作 3.1 L L--需要通过右旋操作 3.2 R R--需要 ...

  10. DJANGO-天天生鲜项目从0到1-014-订单-订单评论

    本项目基于B站UP主‘神奇的老黄’的教学视频‘天天生鲜Django项目’,视频讲的非常好,推荐新手观看学习 https://www.bilibili.com/video/BV1vt41147K8?p= ...