一、Best Time to Buy and Sell Stock I

Say you have an array for which the ith element is the price of a given stock on day i.

If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.

Example 1:

Input: [7, 1, 5, 3, 6, 4]
Output: 5 max. difference = 6-1 = 5 (not 7-1 = 6, as selling price needs to be larger than buying price)

Example 2:

Input: [7, 6, 4, 3, 1]
Output: 0 In this case, no transaction is done, i.e. max profit = 0.

 1 class Solution {
2 public:
3 //遍历一次,每次更新最小值,并且当前值与最小值相减,如果大于最大收入则更新最大收入
4 int maxProfit(vector<int>& prices) {
5 int len=prices.size();
6 if(len==0) return 0;
7 int Min=prices[0],res=0;
8 for(int i=0;i<len;i++)
9 {
10 if(prices[i]<Min) Min=prices[i];
11 res=res>(prices[i]-Min)?res:(prices[i]-Min);
12 }
13 return res;
14
15 }
16 };

二、Best Time to Buy and Sell Stock II

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times). However, you may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

法一:所有的 低谷 与其 最近的 峰值的差  的和

 1 class Solution {
2 public:
3
4 int maxProfit(vector<int>& prices) {
5 int len=prices.size();
6 if(len==0||len==1) return 0;
7 int Max=0,i=1;
8 while(i<len)
9 {
10 while(i<len&&prices[i-1]>=prices[i])
11 i++;
12 int valley=prices[i-1];
13 while(i<len&&prices[i-1]<prices[i])
14 i++;
15 int peek=prices[i-1];
16 Max+=(peek-valley);
17 }
18 return Max;
19 }
20 };

法二:

 1 class Solution {
2 public:
3 int maxProfit(vector<int>& prices)
4 {
5 int len=prices.size();
6 if(len==0||len==1) return 0;
7 int Max=0;
8 for(int i=1;i<len;i++){
9 if(prices[i-1]<prices[i])
10 Max+=(prices[i]-prices[i-1]);
11 }
12 return Max;
13 }
14 };

三、Best Time to Buy and Sell Stock III

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

 1 class Solution {
2 public:
3 //利用四个状态来解答这个题目,假设才开始手里有 0 块钱
4 /*
5 1、sell2[i]:前i天进行第二笔交易中的卖股票状态后剩余最多的钱
6 2、buy2[i]:前i天进行第二笔交易中的买股票状态后剩余最多的钱
7 3、sell1[i]:前i天进行第一笔交易中的卖股票状态后剩余最多的钱
8 4、buy1[i]:
9 sell2[i]=max(sell2[i-1],buy2[i-1]+prices[i]);
10 buy2[i]=max(buy2[i-1],sell1[i-1]-prices[i]);
11 sell1[i]=max(sell1[i-1],buy1[i-1]+prices[i]);
12 buy1[i]=max(buy1[i],-prices[i]);
13 */
14 int maxProfit(vector<int>& prices) {
15 int len=prices.size();
16 if(len==0||len==1) return 0;
17 int sell2=0;
18 int sell1=0;
19 int buy2=INT_MIN;
20 int buy1=INT_MIN;
21 for(int i=0;i<len;i++){
22 sell2=max(sell2,buy2+prices[i]);
23 buy2=max(buy2,sell1-prices[i]);
24 sell1=max(sell1,buy1+prices[i]);
25 buy1=max(buy1,-prices[i]);
26 }
27 return max(sell1,sell2);
28 }
29 };

四:Best Time to Buy and Sell Stock IV

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most k transactions.

 1 class Solution {
2 public:
3 //一次交易代表(买一次并且卖一次)当交易次数k大于数组长度的一半的时候,交易次数就会溢出,就相当于 随便交易求最大利润,就是用贪心解决(II)。
4 /*如果交易次数不到一半
5 采用动态规划来解决问题。
6 我们需要维护如下两个量:
7 global[i][j]:当前到达第i天最多可以进行j次交易,所得到的最大利润。
8 local[i][j]:当前到达第i天最多可以进行j次交易,而且最后一次交易在当天卖出,所得到的最大利润。
9 状态转移方程:
10 global[i][j] = max(local[i][j], global[i-1][j])
11 上述方程比较两个量的大小:①当前局部最大值;第i天交易了②过往全局最大值。到第i-1天进行j次交易的最大值,第i天没有交易
12 local[i][j] = max(global[i-1][j-1] + max(diff, 0), local[i-1][j] + diff)
13 上述方程比较两个量的大小:
14 ①全局到i-1天进行j-1次交易,然后加上今天的交易(如果今天的交易赚钱的话)。
15 ②取局部第i-1天进行j次交易,然后加上今天的差值(local[i-1][j]是第i-1天卖出的交易,它加上diff后变成第i天卖出,并不会增加交易次数。无论diff是正还是负都 要加上,否则就不满足local[i][j]必须在最后一天卖出的条件了)
16 */
17 int maxProfit(int k, vector<int>& prices) {
18 int len=prices.size();
19 if(len==0||len==1) return 0;
20 if(k>=len/2) return quickSolve(prices);
21 int global[k+1]={0};
22 int local[k+1]={0};
23 int diff=0;
24 for(int i=1;i<len;i++)
25 {
26 diff=prices[i]-prices[i-1];
27 for(int j=k;j>=1;j--)
28 {
29 local[j]=max(global[j-1]+max(diff,0),local[j]+diff);
30 global[j]=max(global[j],local[j]);
31 }
32 }
33 return global[k];
34 }
35 private:
36 int quickSolve(vector<int>& prices)
37 {
38 int res=0;
39 for(int i=1;i<prices.size();i++)
40 {
41 if(prices[i]>prices[i-1]) res+=(prices[i]-prices[i-1]);
42 }
43 return res;
44 }
45 };
 

Best Time to Buy and Sell Stock I II III IV的更多相关文章

  1. LeetCode之“动态规划”:Best Time to Buy and Sell Stock I && II && III && IV

    Best Time to Buy and Sell Stock I 题目链接 题目要求: Say you have an array for which the ith element is the ...

  2. [Leetcode][JAVA] Best Time to Buy and Sell Stock I, II, III

    Best Time to Buy and Sell Stock Say you have an array for which the ith element is the price of a gi ...

  3. LeetCode:Best Time to Buy and Sell Stock I II III

    LeetCode:Best Time to Buy and Sell Stock Say you have an array for which the ith element is the pric ...

  4. Best Time to Buy and Sell Stock I II III

    Best Time to Buy and Sell Stock Say you have an array for which the ith element is the price of a gi ...

  5. leetcode day6 -- String to Integer (atoi) &amp;&amp; Best Time to Buy and Sell Stock I II III

    1.  String to Integer (atoi) Implement atoi to convert a string to an integer. Hint: Carefully con ...

  6. Best Time to Buy and Sell Stock I,II,III [leetcode]

    Best Time to Buy and Sell Stock I 你只能一个操作:维修preMin拍摄前最少发生值 代码例如以下: int maxProfit(vector<int> & ...

  7. 解题思路:best time to buy and sell stock i && ii && iii

    这三道题都是同一个背景下的变形:给定一个数组,数组里的值表示当日的股票价格,问你如何通过爱情买卖来发家致富? best time to buy and sell stock i: 最多允许买卖一次 b ...

  8. [LeetCode] 递推思想的美妙 Best Time to Buy and Sell Stock I, II, III O(n) 解法

    题记:在求最大最小值的类似题目中,递推思想的奇妙之处,在于递推过程也就是比较求值的过程,从而做到一次遍历得到结果. LeetCode 上面的这三道题最能展现递推思想的美丽之处了. 题1 Best Ti ...

  9. [leetcode]_Best Time to Buy and Sell Stock I && II

    一个系列三道题,我都不会做,google之答案.过了两道,第三道看不懂,放置,稍后继续. 一.Best Time to Buy and Sell Stock I 题目:一个数组表示一支股票的价格变换. ...

随机推荐

  1. Oracle使用技巧

    Edit/Undo Ctrl+ZEdit/Redo Shift+Ctrl+ZEdit/PL/SQL Beautifier Ctrl+W (自定义) Shift+Home 选择光标位置到行首 Shift ...

  2. 联赛模拟测试22 B. 分组配对 倍增+二分

    题目描述 分析 首先,容易发现一个小组内的最优配对方式(能得到最大综合实力的方式) 一定是实力值最大的男生和最大的女生配对,次大的和次大的配对,以此类推. 但是每次新插入一个值时,需要用 \(nlog ...

  3. WSL2 + Docker + IDEA 开发到发布一步到位

    摘要:本文主要介绍了如何用WSL2.Docker.IDEA将Java应用从开发到发布一步到位. 上次介绍了如何在Windows(WSL2) Linux子系统中搭建搭建Docker环境,这次将利用上次搭 ...

  4. pyside2安装避坑

    cmd 输入 pip install PySide2 官方下载太慢 清华源: pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pysid ...

  5. python的deque(双向)队列详解

    首先 python的队列有很多种 Python标准库中包含了四种队列,分别是queue.Queue / asyncio.Queue / multiprocessing.Queue / collecti ...

  6. json针对list map set 应用

    package JSONtest; import java.util.ArrayList; import java.util.HashMap; import java.util.HashSet; im ...

  7. KVM虚拟化管理平台WebVirtMgr部署及使用

    KVM虚拟化管理平台WebVirtMgr部署及使用   需求: 公司机房有一台2U的服务器(64G内存,32核),由于近期新增业务比较多,测试机也要新增,服务器资源十分有限.所以打算在这台2U服务器上 ...

  8. 【算法】二叉树、N叉树先序、中序、后序、BFS、DFS遍历的递归和迭代实现记录(Java版)

    本文总结了刷LeetCode过程中,有关树的遍历的相关代码实现,包括了二叉树.N叉树先序.中序.后序.BFS.DFS遍历的递归和迭代实现.这也是解决树的遍历问题的固定套路. 一.二叉树的先序.中序.后 ...

  9. 部署LNMP环境

    1.安装nginx yum -y install gcc pcre-devel openssl-devel tar xf nginx-1.16.1.tar.gz cd nginx-1.16.1/ ./ ...

  10. Java安全框架(一)Spring Security

    Java安全框架(一)Spring Security ​ 文章主要分三部分 1.Spring Security的架构及核心组件:(1)认证:(2)权限拦截:(3)数据库管理:(4)权限缓存:(5)自定 ...