MT【272】更大的视野,更好的思路.
已知$f(x)=\sum\limits_{k=1}^{2017}\dfrac{\cos kx}{\cos^k x},$则$f(\dfrac{\pi}{2018})=$_____

分析:
设$g(x)=\sum\limits_{k=1}^{2017}\left(\dfrac{\cos kx}{\cos^k x}+i\dfrac{\sin kx}{\cos^k x}\right)$
$=\sum\limits_{k=1}^{2017}\left(\dfrac{\cos x+i\sin x}{\cos x}\right)^{k}$
$ =\dfrac{\frac{\cos x+i\sin x}{\cos x}-(\frac{\cos x+i\sin x}{\cos x})^{2018}}{1-\frac{\cos x+i\sin x}{\cos x}}$
$=\dfrac{\cos x+i\sin x-\frac{\cos2018x+i\sin2018x}{\cos^{2017}{x}}}{-i\sin x}$
则$g(\dfrac{\pi}{2018})=-1+i\dfrac{\cos\frac{\pi}{2018}+\cos^{-2017}{\frac{\pi}{2018}}}{\sin\frac{\pi}{2018}}$
比较实部可知$f(\dfrac{\pi}{2018})=-1$
思路参考:MT【34】
有时候实数里不容易解决的问题在复数范围内会变得容易。更大的视野带来更好的思路。
练习: 设$f(x)=\dfrac{\sum\limits_{k=1}^{1009}sin(2k-1)x}{\sum\limits_{k=1}^{1009}cos(2k-1)x},$ 则$f(\dfrac{\pi}{2019})=$_____
提示:$z=cosx+isinx,z+z^3+\cdots+z^{2017}=\dfrac{z(1-(z^2)^{1009}}{1-z^2}$,两边比较辐角的正切值.
MT【272】更大的视野,更好的思路.的更多相关文章
- 梭子鱼:APT攻击是一盘更大的棋吗?
随着企业对IT的依赖越来越强,APT攻击可能会成为一种恶意打击竞争对手的手段.目前,APT攻击目标主要有政治和经济目的两大类.而出于经济目的而进行的APT攻击可以获取竞争对手的商业信息,也可使用竞争对 ...
- Qt带来的是更加低廉的开发成本和学习成本,对于很多小公司而言,这种优势足以让他们获得更大的利润空间 good
不能单纯从技术上来看待这个问题,Qt本来是小众的开发平台,个人认为,它的出现只是解决特性场景的特定问题,Qt带来的是更加低廉的开发成本和学习成本,对于很多小公司而言,这种优势足以让他们获得更大的利润空 ...
- 在.NET中快速创建一个5GB、10GB或更大的空文件
对于通过UDP进行打文件传输的朋友应该首先会考虑到一个问题,那就是由于UDP并不会根据先来先到原则进行发送,也许你发送端发送的时候是以包1和包2的顺序传输的,但接收端可能以包2和包1 的顺序来进行接收 ...
- [Swift]LeetCode496. 下一个更大元素 I | Next Greater Element I
You are given two arrays (without duplicates) nums1 and nums2 where nums1’s elements are subset of n ...
- [Swift]LeetCode503. 下一个更大元素 II | Next Greater Element II
Given a circular array (the next element of the last element is the first element of the array), pri ...
- [Swift]LeetCode1019. 链表中的下一个更大节点 | Next Greater Node In Linked List
We are given a linked list with head as the first node. Let's number the nodes in the list: node_1, ...
- 1197多行事务要求更大的max_binlog_cache_size处理与优化
1197多语句事务要求更大的max_binlog_cache_size报错 binlog_cache_size:为每个session 分配的内存,在事务过程中用来存储二进制日志的缓存,提高记录bi ...
- Leetcode 496. 下一个更大元素 I
1.题目描述 给定两个没有重复元素的数组 nums1 和 nums2 ,其中nums1 是 nums2 的子集.找到 nums1 中每个元素在 nums2 中的下一个比其大的值. nums1 中数字 ...
- 下一个更大的数 Next Greater Element
2018-09-24 21:52:38 一.Next Greater Element I 问题描述: 问题求解: 本题只需要将nums2中元素的下一个更大的数通过map保存下来,然后再遍历一遍nums ...
随机推荐
- iOS数据存储-钥匙串存储
2017.11.20 14:41* 字数 227 阅读 678评论 0喜欢 0 钥匙串介绍 1. 表示设备唯一号的标识,在IOS7中要么被禁止使用,要么重新安装程序后两次获取的标识符不一样. 2. ...
- mysql 5.7:show_compatibility_56
show_compatibility_56 - rudy gao - CSDN博客 https://blog.csdn.net/rudygao/article/details/50403107 [SO ...
- windows中dir命令
最近想用dos命令打印指定目录下的所有文件夹的完整路径.最终发现可用dir命令来实现.在此学习下dir的各项命令. 32位win7系统上,打印帮助文档. D:\test>dir /? 显示目录中 ...
- java注解和自定义注解的简单使用
前言 在使用Spring Boot的时候,大量使用注解的语法去替代XML配置文件,十分好用. 然而,在使用注解的时候只知道使用,却不知道原理.直到需要用到自定义注解的时候,才发现对注解原理一无所知,所 ...
- laravel log改为时间格式
1 providers新建文件 LogRotateServiceProvider.php <?php namespace App\Providers; use Monolog\Formatter ...
- 【学亮IT手记】mysql创建/查看/切换数据库
--创建数据库 create database web_test1 CHARACTER set utf8; --切换数据库 use web_test1; --查看当前使用的数据库 select DAT ...
- hadoop分布式系统架构详解
hadoop 简单来说就是用 java写的分布式 ,处理大数据的框架,主要思想是 “分组合并” 思想. 分组:比如 有一个大型数据,那么他就会将这个数据按照算法分成多份,每份存储在 从属主机上,并且在 ...
- Hbase数据结构模型
- Protocol buffers--python 实践(二) protocol buffers vs json
为什么专门开一个坑,来使用pb.放弃本在各平台上都支持得很好的json而使用pb的一个归根到底的理由,就是希望在保证强类型和跨平台的情况下,能够更轻,更快,更简单.既然是奔着这个目标去的,到底多快我需 ...
- python学习笔记(10)--组合数据类型(字典类型)
理解映射: 映射是一种键(索引)和值(数据)的对应.字典是键值对的集合,键值之间无序.用大括号表示{},和dict()创建,键值对用冒号:表示. {键:值,键:值,键:值} >>> ...