Description

未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ iN)。如果湖泊LiLj之间有水路相连,则青蛙FiFj互称为邻居。现在已知每只青蛙的邻居数目x1, x2, ..., xn,请你给出每两个湖泊之间的相连关系。

Input

第一行是测试数据的组数T(0 ≤ T ≤ 20)。每组数据包括两行,第一行是整数N(2 < N < 10),第二行是N个整数,x1, x2,..., xn(0 ≤ xiN)。

Output

对输入的每组测试数据,如果不存在可能的相连关系,输出"NO"。否则输出"YES",并用N×N的矩阵表示湖泊间的相邻关系,即如果湖泊i与湖泊j之间有水路相连,则第i行的第j个数字为1,否则为0。每两个数字之间输出一个空格。如果存在多种可能,只需给出一种符合条件的情形。相邻两组测试数据之间输出一个空行。

Sample Input

3
7
4 3 1 5 4 2 1
6
4 3 1 4 2 0
6
2 3 1 1 2 1

Sample Output

YES
0 1 0 1 1 0 1
1 0 0 1 1 0 0
0 0 0 1 0 0 0
1 1 1 0 1 1 0
1 1 0 1 0 1 0
0 0 0 1 1 0 0
1 0 0 0 0 0 0 NO YES
0 1 0 0 1 0
1 0 0 1 1 0
0 0 0 0 0 1
0 1 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0

Source

POJ Monthly--2004.05.15 Alcyone@pku


思路

给定一个序列,是否可以构建一个图。

经查阅,有Havel-Hakimi定理可用:

  • 非递增排序当前数列\(d[n]\)
  • 让\(k=d[1]\),将k从数组中移除
  • 从第2个开始的前K个元素都-1
  • 不断重复上述过程直到序列出现负数=不可图全都为0=可图

**代码 **

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cctype>
#include<cstring>
#include<cstdlib>
using namespace std;
int maps[20][20];
struct node
{
int id; //序号
int degree; //度
}g[20];
bool cmp(node x,node y)
{
return x.degree > y.degree;
}
int main()
{
int t;
cin >> t;
while(t--)
{
memset(maps,0,sizeof(maps));
memset(g,0,sizeof(g));
int num;
cin >> num;
for(int i=1;i<=num;i++)
{
cin >> g[i].degree;
g[i].id = i;
} //读入部分 bool isok = true; while(true)
{
sort(g+1,g+1+num,cmp);
if(g[1].degree==0) //说明全都为0了符合条件
{
isok = true;
break;
}else
for(int i=2;g[1].degree>0;i++) //将前k个顶点依次-1
{
g[1].degree--;
g[i].degree--;
if(g[i].degree<0)
{
isok = false;
break;
}
maps[g[1].id][g[i].id] = 1;
maps[g[i].id][g[1].id] = 1;
}
if(!isok) break;
}
if(isok)
{
cout << "YES\n";
for(int i=1;i<=num;i++)
{
for(int j=1;j<=num;j++)
{
cout << maps[i][j] << " ";
}
cout << endl;
}
}else
cout << "NO\n";
cout << endl;
}
return 0;
}

Poj 1659.Frogs' Neighborhood 题解的更多相关文章

  1. poj 1659 Frogs' Neighborhood (DFS)

    http://poj.org/problem?id=1659 Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total S ...

  2. poj 1659 Frogs' Neighborhood (贪心 + 判断度数序列是否可图)

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 6076   Accepted: 26 ...

  3. POJ 1659 Frogs' Neighborhood(可图性判定—Havel-Hakimi定理)【超详解】

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9897   Accepted: 41 ...

  4. POJ 1659 Frogs' Neighborhood(Havel-Hakimi定理)

    题目链接: 传送门 Frogs' Neighborhood Time Limit: 5000MS     Memory Limit: 10000K Description 未名湖附近共有N个大小湖泊L ...

  5. POJ 1659 Frogs' Neighborhood (Havel--Hakimi定理)

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 10545   Accepted: 4 ...

  6. poj 1659 Frogs' Neighborhood( 青蛙的邻居)

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9639   Accepted: 40 ...

  7. poj 1659 Frogs' Neighborhood(出入度、可图定理)

    题意:我们常根据无向边来计算每个节点的度,现在反过来了,已知每个节点的度,问是否可图,若可图,输出一种情况. 分析:这是一道定理题,只要知道可图定理,就是so easy了  可图定理:对每个节点的度从 ...

  8. poj 1659 Frogs' Neighborhood Havel-Hakimi定理 可简单图定理

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098136.html 给定一个非负整数序列$D=\{d_1,d_2,...d_n\}$,若存 ...

  9. POJ 1659 Frogs' Neighborhood

    转载请注明出处:http://blog.csdn.net/a1dark 分析:切图论切的第一道题.也是图论的例题.主要用到一个Havel-Hakimi 定理 有以下两种不合理的情形: (1) 某次对剩 ...

随机推荐

  1. numpy中random的使用

    import numpy as np a=np.random.random()#用于生成一个0到1的随机浮点数: 0 <= n < 1.0print(a)0.772000903322952 ...

  2. 有界算子p129

    ? 如果我把这里的1改成2,把1/(a-b) 换成1/2(a-b) 为什么不能是? 2. 这里的x是关于t的函数,为什么x属于 结果了?和x应该没有关系呀? 3. 那为什么T的范数不是一个固定值?为什 ...

  3. mysql_查的小理解

    show create table employee; 对这个语句的小理解: 顿悟呀,之前一直不太理解这条语句,现在忽然觉得明朗起来.他就是展示创建这个表格时的SQL语句.执行上述代码之后结果如下: ...

  4. html总结:背景图片拉伸

    两种方法: ⑴推荐方法 <style>body {background-image:url(images/backimage.jpg);background-size:cover;}< ...

  5. CodeIgniter框架对数据库查询结果进行统计

    假设有一个user表,如果要查询符合条件sex=male的记录数量,有下面几种方法: 方法一:先取回所有符合条件的记录,再count $res = $this->db->query(&qu ...

  6. Java 中的String、StringBuilder与StringBuffer的区别联系(转载)

    1 String 基础 想要了解一个类,最好的办法就是看这个类的源代码,String类源代码如下: public final class String implements java.io.Seria ...

  7. 数据库及ORM

    数据库概念 关系数据库编程 ORM编程

  8. Django Rest framework 框架

    一.开发模式: 1. 普通开发方式(前后端放在一起写) 2. 前后端分离(前后台通过ajaxo交互) 后端(django rest framework写的) <----ajaxo---> ...

  9. Django--CRM--一级, 二级 菜单表

    一. 一级菜单表 1. 首先要修改权限表的字段, 在权限表下面加上icon和 is_menu 的字段 2. 展示结果 # 我们既然想要动态生成一级菜单,那么就需要从数据库中拿出当前登录的用户的菜单表是 ...

  10. python数据结构与算法第六天【栈与队列】

    1.栈和队列的原理 栈:后进先出(LIFO),可以使用顺序表和链表实现 队列:先进先出(FIFO),可以使用顺序表和链表实现 2.栈的实现(使用顺序表实现) #!/usr/bin/env python ...