目的

使用雷达点云提供的深度信息

如何实现

将雷达的三维点云投影到相机的二维图像上

kitti数据集简介

kitti的数据采集平台,配置有四个摄像机和一个激光雷达,四个摄像机中有两个灰度摄像机,两个彩色摄像机。

从图中可看出,关于相机坐标系(camera)的方向与雷达坐标系(velodyne)的方向规定:

camera:  x = right, y = down, z = forward

velodyne: x = forward, y = left, z = up

那么velodyne所采集到的点云数据中,各点的x轴坐标,即为所需的深度信息。

更多详细的简介网络上都能搜索到,这里只列举了与当前目的相关的必要信息。

kitti数据集的raw_data

raw_data对于每个序列都提供了同步且校准后的数据、标定数据。

同步且校准后的数据:

./imageXX 包含有各个摄像机采集到的图像序列

./velodyne_points 包含有雷达扫描到的数据,点云形式,每个点以 (x,y,z,i) 格式存储,i为反射值

(雷达采集数据时,是绕着竖直轴旋转扫描,只有当雷达旋转到与相机的朝向一致时会触发相机采集图像。不过在这里无需关注这一点,直接使用给出的同步且校准后的数据即可,它已将雷达数据与相机数据对齐,也就是可以认为同一文件名对应的图像数据与雷达点云数据属于同一个场景。)

标定数据:

./cam_to_cam 包含有各个摄像机的标定参数

./velo_to_cam 包含有雷达到摄像机的变换参数

对于raw_data,kitti还提供了样例工具,方便读取各种数据文件并输出,参见官网raw_data下载页的development kit

利用kitti提供的devkit以及相应数据集的calib文件

解读calib文件夹

cam_to_cam,包含各相机的标定参数

  - S_xx: 1x2 矫正前xx号相机的图片尺寸
  - K_xx: 3x3 矫正前xx号相机的标定参数
  - D_xx: 1x5 矫正前xx号相机的畸变系数
  - R_xx: 3x3 外参,xx号相机的旋转矩阵
  - T_xx: 3x1 外参,xx号相机的平移矩阵
  - S_rect_xx: 1x2 矫正后XX号相机的图片尺寸
  - R_rect_xx: 3x3 旋转矩阵,用于矫正xx号相机,使得图像平面共面(原话是make image planes co-planar)。
  - P_rect_0x: 3x4 投影矩阵,用于从矫正后的0号相机坐标系 投影到 X号相机的图像平面。

这里只用到最后两个矩阵R_rect和P_rect

velo_to_cam,从雷达坐标系到0号相机坐标系的转换

  - R: 3x3 旋转矩阵
  - T:  3x1 平移矩阵
  - delta_f 和delta_c 已被弃用

由此可以得出从雷达坐标系变换到xx号相机的图像坐标系的公式:

设X为雷达坐标系中的齐次坐标 X = [x y z 1]',对应于xx号相机的图像坐标系的齐次坐标Y = [u v 1]',则:

其中 

(R|T) :        雷达坐标系  ->  0号相机坐标系
R_rect_00: 0号相机坐标系 -> 矫正后的0号相机坐标系
P_rect_0x: 矫正后的0号相机坐标系  ->  x号相机的图像平面
更详细完整的解读参见devkit中的readme.txt

解读devkit

官网提供的样例代码中 run_demoVelodyne.m 实现了将雷达点云投影到相机图像

代码流程

  1. 从所给路径中读取标定文件,获取具体矩阵数值
  2. 根据上述公式,计算投影矩阵 P_velo_to_img,即 Y = P_velo_to_img * X
  3. 从所给路径中读取相机图片,并加载雷达的点云数据。由于只做展示用,为了加快运行速度,对于雷达点云,每隔5个点只保留1个点
  4. 移除那些距离雷达5米之内(雷达的x方向)的点 (猜测这些点落在相机和雷达之间,故不会出现在图像平面上)
  5. 作投影计算,得到投影到二维图像上的点
    6.在图像上画出投影后的点,按照深度(雷达点的x方向值)确定颜色,彩色则是暖色越近,冷色越远;灰度则是深色越近,浅色越远。

若需要从深度图获取深度值,应按照画投影点时深度值到颜色(灰度)值的转换。

KITTI数据集的使用——雷达与相机的数据融合的更多相关文章

  1. 激光相机数据融合(3)--KITTI数据集

    KITTI数据集提供了双目图像,激光数据,和imu/gps位置信息,其中还包括了大量的算法.下载地址为:http://www.cvlibs.net/datasets/kitti/raw_data.ph ...

  2. KITTI数据集

    目的 使用雷达点云提供的深度信息 如何实现 将雷达的三维点云投影到相机的二维图像上 kitti数据集简介 kitti的数据采集平台,配置有四个摄像机和一个激光雷达,四个摄像机中有两个灰度摄像机,两个彩 ...

  3. kitti数据集标定文件解析

    1.kitti数据采集平台 KITTI数据集的数据采集平台装配有2个灰度摄像机,2个彩色摄像机,一个Velodyne64线3D激光雷达,4个光学镜头,以及1个GPS导航系统.图示为传感器的配置平面图, ...

  4. kitti 数据集解析

    1.KITTI数据集采集平台: KITTI数据采集平台包括2个灰度摄像机,2个彩色摄像机,一个Velodyne 3D激光雷达,4个光学镜头,以及1个GPS导航系统.坐标系转换原理参见click.KIT ...

  5. KITTI数据集格式说明

    由于上一篇博客所提到的论文中的训练数据是KITTI的数据集,因此如果我想要用自己的数据集进行训练的话,就需要先弄清楚KITTI数据集的格式,在以下的网址找到了说明: 首先,数据描述中是这样的: 在以下 ...

  6. KITTI数据集上MaskRCNN检测效果示例

    KITTI数据集上MaskRCNN检测效果示例 在Semantic Instance Segmentation Evaluation中,MaskRCNN性能效果排名第一. Test Image 0 I ...

  7. 激光相机数据融合(4)--KITTI数据集中matlab接口说明及扩展

    KITTI数据集接口已经提供了matlab接口,本篇将说明详细说明其应用并与PCL进行对接.PCL为C++点云处理语言库,详情可见:http://pointclouds.org/ 程序可以从官网下载, ...

  8. stixel-world跑在kitti数据集

    kitti数据集中每一帧的Calibration不同,每一帧都存储了4个相机的Calibration http://ww.cvlibs.net/publications/Geiger2013IJRR. ...

  9. 下载Kitti 数据集(dataset) data_road.zip

    官网下载http://www.cvlibs.net/download.php?file=data_road.zip,耗时近3小时,虽然只有几百兆. 但是,我坚持下来了. 保存到了百度网盘,以供国内用户 ...

随机推荐

  1. C++读取与保持图片

    #include<iostream> using namespace std; void main(void) { //保存输入图像文件名和输出图像文件名 ]; ]; //图像数据长度 i ...

  2. 实现CNN卷积神经网络

    以上是模型,下面是代码: import tensorflow as tf import numpy as np import time from tensorflow.examples.tutoria ...

  3. Excel基本操作

    一.excel公式下拉 1.选择最长一列excel ,按CTRL+↓移到最后一个单元格,2光标移到下拉公式的那一列,3.再按CTRL+SHIFT+↑,4.再按CTRL+D 二.输入身份证号等长数字 方 ...

  4. Ubuntu---grep

    摘要:我们已经学过正则表达式了,所以现在开始学习 grep 也是水到渠成的事情. 简介:grep 是 Linux 中最常用的“文本处理工具”之一,grep 与 sed.awk 合称为 Linux 中的 ...

  5. 2018-2019-20175302实验二《Java面向对象程序设计》实验报告

    2018-2019-2 学号实验二<Java面向对象程序设计>实验报告 一.实验步骤及内容 1. 面向对象程序设计 参考 http://www.cnblogs.com/rocedu/p/6 ...

  6. About Feature Scaling and Normalization

    在进行数据处理之前,一定要想一想,你的算法是用来做什么,这样才能选择如何对数据进行预处理. 参考网站: http://sebastianraschka.com/Articles/2014_about_ ...

  7. 48 【golang】json的效率

    本文将主要做如下几方面的测试: 1,构造一个[100]struct的数组,然后来测试它的json编码后的字符串 或者([]byte),首先关心它的功能是否正常: 2,在很早之前,我们在使用golang ...

  8. JVM深入理解

    JVM深入理解 一.JVM介绍 JVM应用百度百科的原话是: JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过 ...

  9. webpack and publish lib

    http://keer2345.github.io/2018/04/13/webpack-4-tutorial-example-with-npm/ https://blog.csdn.net/feng ...

  10. .Net圈子里的一些看法

    金三银四招聘季,不一定一定要跳巢,但是出去看看行情还是有必要的,所以就有这篇随笔. 首先,这里说的.Net圈子是只两个方面 第一,技术人才,属于人的圈子 第二,技术本身,技术的圈子,也就是技术所涵盖的 ...