「TJOI2015」概率论

令\(f_i\)代表\(i\)个点树形态数量,\(g_i\)代表\(i\)个点叶子个数

然后列一个dp

\[f_i=\sum_{j=0}^{i-1} f_j f_{i-j-1}\\
g_i=2\sum_{j=0}^{i-1} f_j g_{i-j-1}
\]

然后显然可以卷,但没有1e5的部分分

然后打表

\[\frac{1}{1} \ \ \frac{3}{3} \ \ \frac{6}{5} \ \ \frac{10}{7} \ \ \frac{15}{9}...
\]

然后猜到通项是

\[\frac{n*(n-1)/2}{n*2-1}
\]

上面是乱搞做法

正解是卡特兰数,生成函数之类的一些东西,留坑待填

话说如果没看出来卡特兰数放在18年是不是就凉了啊...


Code:

#include <cstdio>
double n;
int main()
{
scanf("%lf",&n);
double a=(1+n)*n/2,b=n*2-1,ans=a/b;
printf("%.9lf\n",ans);
return 0;
}

2019.2.25

「TJOI2015」概率论 解题报告的更多相关文章

  1. 「TJOI2015」旅游 解题报告

    「TJOI2015」旅游 LCT沙比题 考虑我们其实是在维护一条链的\(\max\limits_{i<j} v_j-v_i\) 每次直接拿左右子树更新一下就可以了 写的时候把两个方向都维护一下, ...

  2. 「TJOI2015」组合数学 解题报告

    「TJOI2015」组合数学 这不是个贪心吗? 怎么都最小链覆盖=最大点独立集去了 注意到一个点出度最多只有2,可以贪心一下出度的去向 按读入顺序处理就可以,维护一个\(res_i\)数组,表示上一行 ...

  3. 「TJOI2015」线性代数 解题报告

    「TJOI2015」线性代数 和牛客某题很像 在和里面有\(B_{i,j}\)要求是\(A_i,A_j\)都为\(1\),和里面减去\(C_i\)要求\(A_i\)为\(1\),然后先把贡献也就是\( ...

  4. 「ZJOI2016」旅行者 解题报告

    「ZJOI2016」旅行者 对网格图进行分治. 每次从中间选一列,然后枚举每个这一列的格子作为起点跑最短路,进入子矩形时把询问划分一下,有点类似整体二分 至于复杂度么,我不会阿 Code: #incl ...

  5. 「HNOI2016」树 解题报告

    「HNOI2016」树 事毒瘤题... 我一开始以为每次把大树的子树再接给大树,然后死活不知道咋做,心想怕不是个神仙题哦 然后看题解后才发现是把模板树的子树给大树,虽然思维上难度没啥了,但是还是很难写 ...

  6. 「HNOI2016」序列 解题报告

    「HNOI2016」序列 有一些高妙的做法,懒得看 考虑莫队,考虑莫队咋移动区间 然后你在区间内部找一个最小值的位置,假设现在从右边加 最小值左边区间显然可以\(O(1)\),最小值右边的区间是断掉的 ...

  7. 「HNOI2016」网络 解题报告

    「HNOI2016」网络 我有一个绝妙的可持久化树套树思路,可惜的是,它的空间是\(n\log^2 n\)的... 注意到对一个询问,我们可以二分答案 然后统计经过这个点大于当前答案的路径条数,如果这 ...

  8. 「HAOI2018」染色 解题报告

    「HAOI2018」染色 是个套路题.. 考虑容斥 则恰好为\(k\)个颜色恰好为\(c\)次的贡献为 \[ \binom{m}{k}\sum_{i\ge k}(-1)^{i-k}\binom{m-k ...

  9. 「HNOI2016」最小公倍数 解题报告

    「HNOI2016」最小公倍数 考虑暴力,对每个询问,处理出\(\le a,\le b\)的与询问点在一起的联通块,然后判断是否是一个联通块,且联通块\(a,b\)最大值是否满足要求. 然后很显然需要 ...

随机推荐

  1. Jmeter之Constant Timer与constant throughput timer的区别(转)

    当放置Constant Timer于两个http请求之间,那么它代表的含义是:在上一个请求发出至完成后, 开始Contant Timer指定的时间,最后再发出第二个请求.它并不是代表两个请求之间的发送 ...

  2. 11 The superlative

    1 最高级用来表明三个或更多事物之间的关系.最高级是通过在形容词之前加 "the" 并在之后加 "-est",或在形容词之前加 "the most&q ...

  3. Laravel5.5+ 区分前后端用户登录

    Laravel 的用户认证是通过 Auth Facade 门脸实现的,手动认证可是使用  Auth::login() 或 Auth::attempt() 这两个方法实现. 以下内容纯属个人实现,也许有 ...

  4. vue.js 添加 fastclick的支持

    fastclick:处理移动端click事件300毫秒延迟 1.兼容性 iOS 3及更高版本的移动Safari iOS 5及更高版本的Chrome Android上的Chrome(ICS) Opera ...

  5. RPC框架-RMI、RPC和CORBA的区别

    关键词:RMI RPC CORBA简 介:本篇文章重点阐述RMI,附带介绍RPC和CORBA Java远程方法调用(Java RMI)是一组实现了远程方法调用(rmi)的API. java RMI是远 ...

  6. jQuery-mobilevalidate使用 的一些心得,小小总结

    在做M站时比较纠结的是表单验证,不像pc端,移动端的验证要求插件更小更轻量,更加灵活,说不定是冒气泡的报错提示?! 介绍一款好用的移动端的表单验证插件:jQuery-mobilevalidate: 代 ...

  7. 《笔记》Apache2 mod_wsgi的配置

    接手了一台古老的服务器的还使用的是mod_wsgi,所以需要配置一下.其实这里有点怀念,记得当年自己折腾第一个app的时候,还是个什么都不懂的菜鸡.当时用django搜方案的时候,还不知道有uwsgi ...

  8. AdminLTE 前端框架

    适合运维平台  后台管理系统 AdminLTE 是一个开源的后台控制面板和仪表盘 WebApp 模板. 这是一个快速的HTML模板,基于CSS框架的引导. 文档: http://adminlte.la ...

  9. table index & delete array item

    table index & delete array item https://www.iviewui.com/components/table#ZDYLMB 编辑 row = { " ...

  10. Java多线程0:核心理论

    并发编程是Java程序员最重要的技能之一,也是最难掌握的一种技能.它要求编程者对计算机最底层的运作原理有深刻的理解,同时要求编程者逻辑清晰.思维缜密,这样才能写出高效.安全.可靠的多线程并发程序.本系 ...