当求解公式:(a/b)%m 时,因b可能会过大,会出现爆精度的情况,所以需变除法为乘法:

设c是b的逆元,则有b*c≡1(mod m);

则(a/b)%m = (a/b)*1%m = (a/b)*b*c%m = a*c(mod m);

即a/b的模等于a*b的逆元的模;

逆元就是这样应用的;

所以逆元的用处可以说是很广的,很有必要掌握

1.费马小定理求逆元

适用范围:一般在mod是个素数的时候用,比扩欧快一点而且好写。

ll q_pow(ll a,ll n){
ll ans=; ll base=a;
while(n){
if(n&) ans=(ans*base)%mod;
base=base*base%mod;
n>>=;
}
return ans;
}
ll inv(ll a,ll b){
return q_pow(a,b-);
}

2.扩展欧几里得求逆元

适用范围:只要存在逆元即可求,适用于个数不多但是mod很大的时候,也是最常见的一种求逆元的方法。

void exgcd(ll a,ll b,ll& d,ll& x,ll& y)
{
if(!b) { d = a; x = ; y = ; }
else{ exgcd(b, a%b, d, y, x); y -= x*(a/b); }
}
ll inv(ll a, ll p)
{
ll d, x, y;
exgcd(a, p, d, x, y);
return d == ? (x+p)%p : -;
}

逆元(inv)的更多相关文章

  1. 逆元Inv(模板+应用)

    逆元: 如果满足公式,则有a 是 b的逆元同时b也是a的逆元. 逆元的应用: 设c为b在对m取余的意义下的逆元: 在求解公式 (a / b) % m的时候,如果b可能会非常的大,所以会出现爆精度的问题 ...

  2. gcd,lcm,ext_gcd,inv

    Least Common Multiple http://acm.hdu.edu.cn/showproblem.php?pid=1019 #include<cstdio> int gcd( ...

  3. hdu 5407 CRB and Candies(组合数+最小公倍数+素数表+逆元)2015 Multi-University Training Contest 10

    题意: 输入n,求c(n,0)到c(n,n)的所有组合数的最小公倍数. 输入: 首行输入整数t,表示共有t组测试样例. 每组测试样例包含一个正整数n(1<=n<=1e6). 输出: 输出结 ...

  4. A. On The Way to Lucky Plaza 概率 乘法逆元

    A. On The Way to Lucky Plaza time limit per test 1.0 s memory limit per test 256 MB input standard i ...

  5. Codeforces gym 101343 A. On The Way to Lucky Plaza【概率+逆元+精度问题】

     2017 JUST Programming Contest 2.0 题目链接:http://codeforces.com/gym/101343/problem/A A. On The Way to ...

  6. HDU 5698——瞬间移动——————【逆元求组合数】

    瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  7. 【题解】POJ1845 Sumdiv(乘法逆元+约数和)

    POJ1845:http://poj.org/problem?id=1845 思路: AB可以表示成多个质数的幂相乘的形式:AB=(a1n1)*(a2n2)* ...*(amnm) 根据算数基本定理可 ...

  8. O(n)求素数,求欧拉函数,求莫比乌斯函数,求对mod的逆元,各种求

    筛素数 void shai() { no[1]=true;no[0]=true; for(int i=2;i<=r;i++) { if(!no[i]) p[++p[0]]=i; int j=1, ...

  9. hdu 5698(杨辉三角的性质+逆元)

    ---恢复内容开始--- 瞬间移动 Accepts: 1018 Submissions: 3620 Time Limit: 4000/2000 MS (Java/Others) Memory Limi ...

随机推荐

  1. Rime 小狼毫 注意事项

    https://rime.im/https://github.com/rime/weasel/pulse 打不出中文可能是,没有五笔需要的文件: wubi_pinyin.schema.yamlCtrl ...

  2. MySQL之慢查询日志和通用查询

    MySQL中的日志包括:错误日志.二进制日志.通用查询日志.慢查询日志等等.这里主要介绍下比较常用的两个功能:通用查询日志和慢查询日志. 1.通用查询日志:记录建立的客户端连接和执行的语句. 2.慢查 ...

  3. 通过arcmap发布缓存服务,无法选择自定义方案

    出现该问题是因为缓存目录有该缓存信息,清楚掉之后就可以选择自定义方案了

  4. 2 Servlet 细节

    1 Servlet 配置详解 ①  由于客户端在浏览器只能通过URL访问web服务器的资源,所以Servlet程序若想被外界访问,必须把Servlet 程序映射到一个URL 地址上,这个工作在项目we ...

  5. java随笔5 完整路径的应用

    不仅类,函数,甚至参数都可以获取完整路径

  6. js获取非行间样式/写入样式(行间)

    <!--DOCTYPE html--> <html> <head> <meta charset="utf-8" /> <sty ...

  7. mac下virtualbox中centos6.5虚拟机实现全屏和调整分辨率

    在visualbox里安装好centos后,发现不能分辨率与原屏幕不一致,很多解决方法是:安装增强包.可是安装增强包后依然达不到效果. 究其原因,原来因为没有安装显卡驱动导致安装了增强包后无法实现分辨 ...

  8. PhpStorm本地断点调试

    一.断点调试php环境搭建 1.检测本地php环境是否安装了Xdebug 在本地输出phpinfo():搜索Xdebug;如下图  如果没有安装,安装操作Xdebug如下: 将phpinfo();的信 ...

  9. 使用python库xlsxwriter库来输出各种xlsx文件

    功能性的文章直接用几个最简单的实现表达: xlsxwriter库的核心就是其Workbook对象. 创建一个指定名字的xlsx文件: import xlsxwriter filename = '/Us ...

  10. windows 10 screenshot keyboard shortcut

    windows 10 screenshot keyboard shortcut Win + Shfit + S https://www.cnet.com/how-to/8-ways-to-take-s ...