题目描述

  有一个\(n\)个元素的随机置换\(P\),求\(P\)分解出的轮换个数的\(m\)次方的期望\(\times n!\)

  \(n\leq 100000,m\leq 30\)

题解

解法一

  有一种暴力的做法:设\(f_{i,j}\)为\(i\)个元素的随机置换\(P\),分解出的轮换个数的\(j\)次方的期望\(\times i!\)

  考虑第\(P_i\)是什么。

  如果是\(i\),那么就多了一个轮换,用二项式定理展开得到\(\sum_{k=0}^jf_{i-1,k}\binom{j}{k}\)。

  如果不是\(i\),那么可以看成把\(i\)插入到已有的轮换中,有\(i-1\)种方法,答案就是\((i-1)f_{i-1,j}\)

  处理出组合数直接DP即可。

  时间复杂度:\(O(nm^2)\)

解法二

  考虑排列中轮换的个数为\(i\)的方案数,发现答案就是\(\begin{bmatrix}n\\i\end{bmatrix}\)。

  推一波式子。

\[\begin{align}
ans&=\sum_{i=1}^n\begin{bmatrix}n\\i\end{bmatrix}i^m\\
&=\sum_{i=1}^n\begin{bmatrix}n\\i\end{bmatrix}\sum_{j=1}^m\begin{Bmatrix}m\\j\end{Bmatrix}\binom{i}{j}j!\\
&=\sum_{i=1}^m\begin{Bmatrix}m\\i\end{Bmatrix}i!\sum_{j=i}^n\begin{bmatrix}n\\j\end{bmatrix}\binom{j}{i}\\
&=\sum_{i=1}^m\begin{Bmatrix}m\\i\end{Bmatrix}\begin{bmatrix}n+1\\i+1\end{bmatrix}i!\\
\end{align}
\]

  最后这个式子是有组合意义的。

  你要把 \(n\) 个元素分成 \(j\) 个环,然后选 \(i\) 个环出来。这个的方案数等价于先组出 \(i\) 个环,然后把剩下的元素放到一起,把所有元素的后继看成一个排列,那么组出剩下 \(j-i\) 个环的方案数就是元素个数的阶乘,即加上一个物品后组成一个环的方案数。

  处理出斯特林数直接计算。

  时间复杂度:\(O(nm+m^2)\)

代码

解法一

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<utility>
#include<iostream>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
const ll p=1000000007;
ll f[100010][40];
ll fac[100010];
ll c[110][110];
int main()
{
int n,k;
scanf("%d%d",&n,&k);
for(int i=0;i<=k;i++)
{
c[i][0]=1;
for(int j=1;j<=i;j++)
c[i][j]=(c[i-1][j-1]+c[i-1][j])%p;
}
fac[0]=1;
for(int i=1;i<=n;i++)
fac[i]=fac[i-1]*i%p;
f[0][0]=1;
for(int i=1;i<=n;i++)
{
for(int j=0;j<=k;j++)
for(int k=0;k<=j;k++)
f[i][j]=(f[i][j]+f[i-1][k]*c[j][k])%p;
for(int j=0;j<=k;j++)
f[i][j]=(f[i][j]+f[i-1][j]*(i-1))%p;
}
printf("%lld\n",f[n][k]);
return 0;
}

解法二

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<utility>
#include<iostream>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
int rd()
{
int s=0,c;
while((c=getchar())<'0'||c>'9');
s=c-'0';
while((c=getchar())>='0'&&c<='9')
s=s*10+c-'0';
return s;
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
const int p=1000000007;
int s[100010][32];
int S[31][31];
int main()
{
int n,m;
n=rd();
m=rd();
s[0][0]=1;
for(int i=1;i<=n+1;i++)
for(int j=1;j<=m+1;j++)
s[i][j]=(s[i-1][j-1]+ll(i-1)*s[i-1][j])%p;
S[0][0]=1;
for(int i=1;i<=m;i++)
for(int j=1;j<=m;j++)
S[i][j]=(S[i-1][j-1]+(ll)j*S[i-1][j])%p;
int ans=0;
int u=1;
for(int i=1;i<=m;i++)
{
u=(ll)u*i%p;
ans=(ans+(ll)u*S[m][i]%p*s[n+1][i+1])%p;
}
printf("%d\n",ans);
return 0;
}

【XSY1262】【GDSOI2015】循环排插 斯特林数的更多相关文章

  1. [HDU 3625]Examining the Rooms (第一类斯特林数)

    [HDU 3625]Examining the Rooms (第一类斯特林数) 题面 有n个房间,每个房间有一个钥匙,钥匙等概率的出现在n个房间内,每个房间中只会出现且仅出现一个钥匙.你能炸开门k次, ...

  2. CF960G-Bandit Blues【第一类斯特林数,分治,NTT】

    正题 题目链接:https://www.luogu.com.cn/problem/CF960G 题目大意 求有多少个长度为\(n\)的排列,使得有\(A\)个前缀最大值和\(B\)个后缀最大值. \( ...

  3. 【HDU 4372】 Count the Buildings (第一类斯特林数)

    Count the Buildings Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  4. 【CF932E】Team Work(第二类斯特林数)

    [CF932E]Team Work(第二类斯特林数) 题面 洛谷 CF 求\(\sum_{i=1}^nC_{n}^i*i^k\) 题解 寒假的时候被带飞,这题被带着写了一遍.事实上并不难,我们来颓柿子 ...

  5. Luogu4609 FJOI2016建筑师(斯特林数)

    显然排列中的最大值会将排列分成所能看到的建筑不相关的两部分.对于某一边,将所能看到的建筑和其遮挡的建筑看成一个集合.显然这个集合内最高的要排在第一个,而剩下的建筑可以随便排列,这相当于一个圆排列.同时 ...

  6. BZOJ4559 JLOI2016成绩比较(容斥原理+组合数学+斯特林数)

    容斥一发改为计算至少碾压k人的情况数量,这样对于每门课就可以分开考虑再相乘了.剩下的问题是给出某人的排名和分数的值域,求方案数.枚举出现了几种不同的分数,再枚举被给出的人的分数排第几,算一个类似斯特林 ...

  7. 数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群)

    数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群) 因为不会做目录所以请善用ctrl+F 本来想的是笔记之类的,写着写着就变成了资源整理 一些有的 ...

  8. 8-机器分配(hud4045-组合+第二类斯特林数)

    http://acm.hdu.edu.cn/showproblem.php?pid=4045 Machine schedulingTime Limit: 5000/2000 MS (Java/Othe ...

  9. 【UVA 11077】 Find the Permutations (置换+第一类斯特林数)

    Find the Permutations Sorting is one of the most used operations in real life, where Computer Scienc ...

随机推荐

  1. Django之连接多个数据库的相关配置

    01-修改django默认的数据库 # settings.py DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NA ...

  2. python之psutil模块详解(Linux)--小白博客

    Python-psutil模块 windows系统监控实例,查询 https://www.cnblogs.com/zhou2019/p/10567282.html 1.简单介绍 psutil是一个跨平 ...

  3. python二:数据类型举例练习--小白博客

    一.#字符串 res = 'hello,world' 1.#字符串切片取值:******* print(res[0:5]) 顾头不顾尾,取下标0-4的字符 print(res[0:-1:2]) 步长为 ...

  4. python-Selenium库的详解

    一.什么是Selenium selenium 是一套完整的web应用程序测试系统,包含了测试的录制(selenium IDE),编写及运行(Selenium Remote Control)和测试的并行 ...

  5. maven工程下get的URI中带中文名称乱码解决

    在用maven做项目时,出现了乱码问题: http://localhost:8086/search.html?keyword=手机 经过检查发现已经在web.xml配置request等字符编码 < ...

  6. Masonry练习详解

    添加约束的方式: 1.通过使用NSLayoutConstraints添加约束到约束数组中,之前必须设置translatesAutoresizingMaskIntoConstraints = NO,即取 ...

  7. 斐波那契数列yield表示

    def fib(num): n=0 a,b=0,1 while n<num: print(b) yield a,b=b,a+b n=n+1a=fib(30)next(a)next(a)  

  8. #Leetcode# 1009. Complement of Base 10 Integer

    https://leetcode.com/problems/complement-of-base-10-integer/ Every non-negative integer N has a bina ...

  9. 剑指offer(1)

    题目: 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. ...

  10. python django 的环境搭建(centos)

    一.安装好nginx 二.安装uwsgi yum install python-devel -y pip3 install uwsgi #测试启动django /usr/local/python3/b ...