题目分析:

欧几里得算法来处理一类分数问题,分数问题的形式如下

$\frac{a}{b} < \frac{p}{q} < \frac{c}{d}$

当a=0时,答案等于$\frac{1}{\lfloor \frac{d}{c} \rfloor + 1}$
当a>=b时,可以考虑前后同减去一个数化为真分数,再加上

当c>d时,因为不满足一二,所以可以直接令答案等于$\frac{1}{1}$

否则分子分母取倒,再倒回来

代码:

 #include<bits/stdc++.h>
using namespace std; const int maxn = ; int n,C1,C2;
int a[maxn]; pair<int,int> p1,p2; void comp(pair<int,int> alpha,pair<int,int> beta){
if(1ll*alpha.first*beta.second >= 1ll*alpha.second*beta.first)
p1 = beta;
} pair<int,int> euchild(pair<int,int> alpha,pair<int,int> beta){
if(alpha.first == ) return make_pair(,beta.second/beta.first+);
if(alpha.first >= alpha.second){
int lw = alpha.first/alpha.second,hh = beta.second;
pair<int,int> jh = euchild(make_pair(alpha.first%alpha.second,alpha.second),make_pair(beta.first-lw*hh,hh));
jh.first += jh.second*lw;
return jh;
}
if(beta.first > beta.second) return make_pair(,);
swap(beta.first,beta.second);swap(alpha.first,alpha.second);
pair<int,int> jh = euchild(beta,alpha);
swap(jh.first,jh.second);
return jh;
} void work(){
if(n&){puts("-1");return;}
p1 = make_pair(,);
int a1 = ,a2 = ;
for(int i=;i<n;i++){
if(i&) a1 += a[i];
else a2 += a[i];
comp(p1,make_pair(a1,a2));
}
a2 += a[n]; p2 = make_pair(a2,a1); swap(p1.first,p1.second);
if(1ll*p1.first*p2.second > 1ll*p2.first*p1.second){puts("-1");return;}
pair<int,int> ans = euchild(p1,p2);
if(ans.first <= C1 && ans.second <= C2){
printf("%d %d\n",ans.first,ans.second);
}else puts("-1");
} int main(){
int Tmp; scanf("%d",&Tmp);
while(Tmp--){
scanf("%d%d%d",&n,&C1,&C2);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
work();
}
return ;
}

codechef EBAIT Election Bait【欧几里得算法】的更多相关文章

  1. 扩展欧几里得算法(extgcd)

    相信大家对欧几里得算法,即辗转相除法不陌生吧. 代码如下: int gcd(int a, int b){ return !b ? gcd(b, a % b) : a; } 而扩展欧几里得算法,顾名思义 ...

  2. 欧几里得算法:从证明等式gcd(m, n) = gcd(n, m mod n)对每一对正整数m, n都成立说开去

    写诗或者写程序的时候,我们经常要跟欧几里得算法打交道.然而有没要考虑到为什么欧几里得算法是有效且高效的,一些偏激(好吧,请允许我用这个带有浓重个人情感色彩的词汇)的计算机科学家认为,除非程序的正确性在 ...

  3. noip知识点总结之--欧几里得算法和扩展欧几里得算法

    一.欧几里得算法 名字非常高大上的不一定难,比如欧几里得算法...其实就是求两个正整数a, b的最大公约数(即gcd),亦称辗转相除法 需要先知道一个定理: gcd(a, b) = gcd(b, a  ...

  4. 欧几里得算法与扩展欧几里得算法_C++

    先感谢参考文献:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 注:以下讨论的数均为整数 一.欧几里得算法(重点是证 ...

  5. 最小公约数(欧几里得算法&amp;&amp;stein算法)

    求最小公约数,最easy想到的是欧几里得算法,这个算法也是比較easy理解的,效率也是非常不错的. 也叫做辗转相除法. 对随意两个数a.b(a>b).d=gcd(a.b),假设b不为零.那么gc ...

  6. vijos1009:扩展欧几里得算法

    1009:数论 扩展欧几里得算法 其实自己对扩展欧几里得算法一直很不熟悉...应该是因为之前不太理解的缘故吧这次再次思考,回看了某位大神的推导以及某位大神的模板应该算是有所领悟了 首先根据题意:L1= ...

  7. ****ural 1141. RSA Attack(RSA加密,扩展欧几里得算法)

    1141. RSA Attack Time limit: 1.0 secondMemory limit: 64 MB The RSA problem is the following: given a ...

  8. 欧几里得算法求最大公约数(gcd)

    关于欧几里得算法求最大公约数算法, 代码如下: int gcd( int a , int b ) { if( b == 0 ) return a ; else gcd( b , a % b ) ; } ...

  9. Python 最大公约数的欧几里得算法及Stein算法

    greatest common divisor(最大公约数) 1.欧几里得算法 欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数. 其计算原理依赖于下面的定理: 两个整数的最大公约数等 ...

随机推荐

  1. .net core 监听性能,异常

    https://www.cnblogs.com/laozhang-is-phi/p/10287023.html#autoid-2-2-0

  2. H5 22-通配符选择器

    22-通配符选择器 我是标题 我是段落 我是超链接 --> 我是标题 我是段落 我是超链接 <!DOCTYPE html> <html lang="en"& ...

  3. rest-framework的认证组件

    认证组件 1.登录认证(与组件无关): 首先要在model表内添加用户表和token表: from django.db import models # Create your models here. ...

  4. ReentrantLock源码分析

    参考: 五月的仓颉 ReentrantLock实现原理 活在梦里 AQS源码解读 重入锁是基于AQS实现的,它提供了公平锁和非公平锁两个版本的实现. public class ReentrantLoc ...

  5. mysql 5.7:show_compatibility_56

    show_compatibility_56 - rudy gao - CSDN博客 https://blog.csdn.net/rudygao/article/details/50403107 [SO ...

  6. 给网站配置免费的HTTS证书

    取经自思否:https://segmentfault.com/a/1190000015231137 https 的网站 搜索引擎 会优先收录,所以就抽时间记录下配置博客的过程,各种找资料,终于给我找到 ...

  7. C#设计模式之1:策略模式

    首先需要说明的是该系列的所有内容都是基于headfirst设计模式来描述的.因为我之前也看过不少关于设计模式的书,还是发现这本最好,因为这本书里面给出的例子是最贴切实际的.不说了,开始这个系列吧! 策 ...

  8. [转帖]IP地址、子网掩码、网络号、主机号、网络地址、主机地址以及ip段/数字-如192.168.0.1/24是什么意思?

    IP地址.子网掩码.网络号.主机号.网络地址.主机地址以及ip段/数字-如192.168.0.1/24是什么意思? 2016年03月26日 23:38:50 JeanCheng 阅读数:105674  ...

  9. Laravel设置软删除及其恢复系列操作

    软删除及其相关实现 在模型类中要使用SoftDeletestrait并设置$date属性数组 <?php namespace App\Models; use Illuminate\Databas ...

  10. java随笔5 完整路径的应用

    不仅类,函数,甚至参数都可以获取完整路径