传送门:>Here<

题意:给出一张有向图,问从点A到点B恰好经过k个点(包括终点)的路径方案数

解题思路

一道矩阵乘法的好题!妙哉~

话说把矩阵乘法放在图上好神奇,那么跟矩阵唯一有关的就是邻接矩阵……

考虑邻接矩阵在这道题里的含义也就是从A到B经过1个点的方案数——能到达或不能到达。而当邻接矩阵自乘时,假设自乘一次得到矩阵B,则$b[i][j] = \sum\limits_{}{}g[i][k]*g[k][j]$。因此k就作为了枚举的中介点,由于最后得到的项是累积的,所以自乘一次以后就得到了经过2个点的方案数。因此自乘k-1即能得到经过k个点的方案数。

此时,乘法的意义就成为了每一次累积$(i->k)的方案数 * (k->j)的方案数 \  (起点终点固定)$

Code

/*By DennyQi*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#define r read()
#define Max(a,b) (((a)>(b)) ? (a) : (b))
#define Min(a,b) (((a)<(b)) ? (a) : (b))
using namespace std;
typedef long long ll;
const int MAXN = ;
const int MAXM = ;
const int INF = ;
inline int read(){
int x = ; int w = ; register int c = getchar();
while(c ^ '-' && (c < '' || c > '')) c = getchar();
if(c == '-') w = -, c = getchar();
while(c >= '' && c <= '') x = (x << ) + (x << ) + c - '', c = getchar(); return x * w;
}
int N,M,K,Q,x,y,A,B;
int g[][],a[][],b[][],ans[][][];
inline void Init(){
memset(g, , sizeof(g));
}
inline void Matrix_mul(){
memset(ans, , sizeof(ans));
for(int num = ; num <= ; ++num){
for(int i = ; i <= N; ++i){
ans[num][i][i] = ;
}
}
for(int num = ; num <= ; ++num){
for(int i = ; i <= N; ++i){
for(int j = ; j <= N; ++j){
b[i][j] = ;
for(int k = ; k <= N; ++k){
b[i][j] = (b[i][j] + ans[num-][i][k] * g[k][j]) % ;
}
}
}
for(int i = ; i <= N; ++i){
for(int j = ; j <= N; ++j){
ans[num][i][j] = b[i][j];
}
}
}
}
int main(){
for(;;){
N = r, M = r;
if(!N && !M) break;
Init();
for(int i = ; i <= M; ++i){
x = r+, y = r+;
g[x][y] = ;
}
Matrix_mul();
Q = r;
while(Q--){
A = r, B = r, K = r;
printf("%d\n", ans[K][A+][B+] % );
}
}
return ;
}

☆ [HDU2157] How many ways?? 「矩阵乘法求路径方案数」的更多相关文章

  1. 【poj3070】矩阵乘法求斐波那契数列

    [题目描述] 我们知道斐波那契数列0 1 1 2 3 5 8 13…… 数列中的第i位为第i-1位和第i-2位的和(规定第0位为0,第一位为1). 求斐波那契数列中的第n位mod 10000的值. [ ...

  2. P1474 货币系统 Money Systems(完全背包求填充方案数)

    题目链接:https://www.luogu.org/problemnew/show/1474 题目大意:有V种货币,求用V种货币凑出面值N有多少种方案. 解题思路:就是完全背包问题,只是将求最大价值 ...

  3. Hdu 2157 How many ways??(DP||矩阵乘法)

    How many ways?? Time Limit:1000 MS Memory Limit: 32768 K Problem Description 春天到了, HDU校园里开满了花, 姹紫嫣红, ...

  4. HDU----(2157)How many ways??(快速矩阵幂)

    How many ways?? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  5. [SDOI2009]HH去散步 「矩阵乘法计数」

    计数问题也许可以转化为矩阵乘法形式 比如若该题没有不能在一条边上重复走的条件限制,那么直接将邻接矩阵转化为矩阵乘法即可 故 矩阵乘法计数 对于计数问题,若可以将 \(n\) 个点表示成 \(n \ti ...

  6. 「BZOJ 1297」「SCOI 2009」迷路「矩阵乘法」

    题意 边权\(w \in [1, 9]\)的\(n\)个结点的有向图,图上从\(1\)到\(n\)长度为\(d\)的路径计数,\(n \leq 10\). 题解 如果边权为\(1\)很经典,设\(f[ ...

  7. 洛谷P2886 [USACO07NOV]Cow Relays G (矩阵乘法与路径问题)

    本题就是求两点间只经过n条边的最短路径,定义广义的矩阵乘法,就是把普通的矩阵乘法从求和改成了取最小值,把内部相乘改成了相加. 代码包含三个内容:广义矩阵乘法,矩阵快速幂,离散化: 1 #include ...

  8. CF 149D Coloring Brackets(区间DP,好题,给配对的括号上色,求上色方案数,限制条件多,dp四维)

    1.http://codeforces.com/problemset/problem/149/D 2.题目大意 给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色, ...

  9. P1466 集合 Subset Sums(01背包求填充方案数)

    题目链接:https://www.luogu.org/problem/show?pid=1466 题目大意:对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合, ...

随机推荐

  1. 使用Thrift让Python和C#可以相互调用

    在聊如何使用Thrift让Python和C#可以互相调用之前,我们先来看看下面的话题. 一.什么是微服务.微服务的特征.诞生的背景.优势和不足 微服务:使用一套小服务来开发单个应用的方式,每个服务运行 ...

  2. 4月27号开学! 第6期《jmeter实战接口自动化+性能》课程,零基础也能学

    2019年 第6期<jmeter实战接口自动化+性能>课程,4月27号开学! 主讲老师:飞天小子 上课方式:QQ群视频在线教学 本期上课时间:4月27号-6月9号,每周六.周日晚上20:0 ...

  3. docker环境搭建

    参考地址:https://www.imooc.com/article/details/id/25228 操作系统Centos7 1.替换yum源为阿里云yum源: //备份yum源 mv /etc/y ...

  4. new、getInstance()、newInstance()、Class.forName()

    1.对象使用之前通过getinstance()得到而不需要自己定义,用完之后不需要delete: 2.new 一定要生成一个新对象,分配内存:getInstance() 则不一定要再次创建,它可以把一 ...

  5. c++入门之类继承初步

    继承是面向对象的一种很重要的特性,先来复习基类的基本知识: 先上一段代码: # ifndef TABLE00_H # define TABLE00_H # include "string&q ...

  6. jQuery基础语法知识梳理

    一.attr() attr()方法设置或返回元素的属性. attr(属性名):获取元素属性名的值. attr(属性名,属性值):设置元素属性名的值. 例子: <a href=”http://12 ...

  7. 史上最全 原生javascript的知识总结,适合新手及查资料用!

    适合右键另存为图片保存,再放大看!

  8. MySQL和Oracle的区别

    由于SQL Server不常用,所以这里只针对MySQL数据库和Oracle数据库的区别 (1) 对事务的提交    MySQL默认是自动提交,而Oracle默认不自动提交,需要用户手动提交,需要在写 ...

  9. Hadoop01的主要总结

    Hadoop (离线) 分布式的计算框架 scala---spark(实时计算框架)

  10. java开发中使用枚举表述数据字典

    一.用枚举表述数据字典 1.代码: package com.inspire.jdk.caculate; /** * Created by yaming * 用枚举表述常量数据字段 */ public ...