2019.03.29 bzoj5463: [APIO2018] 铁人两项(圆方树+树形dp)
传送门
题意简述:给你一张无向图,问你满足存在从a−>b−>ca->b->ca−>b−>c且不经过重复节点的路径的有序点对(a,b,c)(a,b,c)(a,b,c)的数量。
思路:
对每一个连通块建一棵圆方树,然后可以按照圆点和方点做不同的树形dpdpdp。
圆点:找存在于两棵不同子树的点对数
方点:找存在于三颗不同子树的点对数。
代码:
#include<bits/stdc++.h>
#define ri register int
using namespace std;
const int rlen=1<<18|1;
inline char gc(){
static char buf[rlen],*ib,*ob;
(ib==ob)&&(ob=(ib=buf)+fread(buf,1,rlen,stdin));
return ib==ob?-1:*ib++;
}
inline int read(){
int ans=0;
char ch=gc();
while(!isdigit(ch))ch=gc();
while(isdigit(ch))ans=((ans<<2)+ans<<1)+(ch^48),ch=gc();
return ans;
}
typedef long long ll;
const int N=2e5+5;
vector<int>e[N],g[N];
int n,m,low[N],all,dfn[N],sig,tot=0,stk[N],siz[N],top=0;
ll ans=0;
void tarjan(int p){
++all,low[p]=dfn[p]=++tot,stk[++top]=p;
for(ri i=0,v;i<e[p].size();++i){
if(!dfn[v=e[p][i]]){
tarjan(v),low[p]=min(low[v],low[p]);
if(low[v]>=dfn[p]){
g[++sig].push_back(p),g[p].push_back(sig);
int x;
do g[sig].push_back(x=stk[top--]),g[x].push_back(sig);while(x^v);
}
}
else low[p]=min(dfn[v],low[p]);
}
}
void dfs(int p,int fa){
siz[p]=p<=n;
int sum=0;
ll tmp=0;
for(ri i=0,v;i<g[p].size();++i)if((v=g[p][i])^fa){
dfs(v,p);
tmp+=(ll)sum*siz[v];
sum+=siz[v],siz[p]+=siz[v];
}
tmp+=(ll)sum*(all-siz[p]);
if(p<=n)ans+=tmp;
else{for(ri i=0,v;i<g[p].size();++i)if((v=g[p][i])^fa)ans+=tmp-(ll)(all-siz[v])*siz[v];ans+=tmp-(ll)(all-siz[p])*siz[p];}
}
int main(){
sig=n=read(),m=read();
for(ri i=1,u,v;i<=m;++i)u=read(),v=read(),e[u].push_back(v),e[v].push_back(u);
for(ri i=1;i<=n;++i)if(!dfn[i])all=0,tarjan(i),dfs(i,0);
cout<<ans*2;
return 0;
}
2019.03.29 bzoj5463: [APIO2018] 铁人两项(圆方树+树形dp)的更多相关文章
- [APIO2018]铁人两项——圆方树+树形DP
题目链接: [APIO2018]铁人两项 对于点双连通分量有一个性质:在同一个点双里的三个点$a,b,c$,一定存在一条从$a$到$c$的路径经过$b$且经过的点只被经过一次. 那么我们建出原图的圆方 ...
- loj2587 「APIO2018」铁人两项[圆方树+树形DP]
主要卡在一个结论上..关于点双有一个常用结论,也经常作为在圆方树/简单路径上的良好性质,对于任意点双内互不相同的三点$s,c,t$,都存在简单路径$s\to c\to t$,证明不会.可以参见clz博 ...
- [BZOJ5463][APIO2018]铁人两项(圆方树DP)
题意:给出一张图,求满足存在一条从u到v的长度大于3的简单路径的有序点对(u,v)个数. 做了上一题[HDU5739]Fantasia(点双连通分量+DP),这个题就是一个NOIP题了. 一开始考虑了 ...
- [APIO2018] Duathlon 铁人两项 圆方树,DP
[APIO2018] Duathlon 铁人两项 LG传送门 圆方树+简单DP. 不会圆方树的话可以看看我的另一篇文章. 考虑暴力怎么写,枚举两个点,答案加上两个点之间的点的个数. 看到题面中的一句话 ...
- [APIO2018]铁人两项 --- 圆方树
[APIO2018] 铁人两项 题目大意: 给定一张图,问有多少三元组(a,b,c)(a,b,c 互不相等)满足存在一条点不重复的以a为起点,经过b,终点为c的路径 如果你不会圆方树 ------- ...
- [APIO2018]铁人两项 [圆方树模板]
把这个图缩成圆方树,把方点的权值设成-1,圆点的权值设成点双的size,算 经过这个点的路径的数量*这个点的点权 的和即是答案. #include <iostream> #include ...
- 【Luogu4630】【APIO2018】 Duathlon 铁人两项 (圆方树)
Description 给你一张\(~n~\)个点\(~m~\)条边的无向图,求有多少个三元组\(~(x, ~y, ~z)~\)满足存在一条从\(~x~\)到\(~z~\)并且经过\(~y~\)的 ...
- LOJ 2587 「APIO2018」铁人两项——圆方树
题目:https://loj.ac/problem/2587 先写了 47 分暴力. 对于 n<=50 的部分, n3 枚举三个点,把图的圆方树建出来,合法条件是 c 是 s -> f 路 ...
- 洛谷P4630 铁人两项--圆方树
一道很好的圆方树入门题 感谢PinkRabbit巨佬的博客,讲的太好啦 首先是构建圆方树的代码,也比较好想好记 void tarjan(int u) { dfn[u] = low[u] = ++dfn ...
随机推荐
- Python中函数和方法的区别
方法是一种特殊的函数属于某个类的的函数叫方法不属于某个类的函数叫函数 转自csdn https://blog.csdn.net/weixin_40380298/article/details/7825 ...
- Res-Family: From ResNet to SE-ResNeXt
Res-Family: From ResNet to SE-ResNeXt 姚伟峰 http://www.cnblogs.com/Matrix_Yao/ Res-Family: From ResNet ...
- android手机旋转方向识别
private OrientationEventListener mOrientationListener; private String TAG = "MainActivity" ...
- JAVA字符串的处理
问题描述: 从键盘数入若干文字,最后输入的一行"end"代表结束标记. 统计该段文字中英文字母的个数 将其中的所有单词the全部改为a,输出结果 将该段文字所有的数字串找出来输出 ...
- superset在 centos 7安装运行
参考:1.http://blog.csdn.net/u014729236/article/details/76302888?locationNum=2&fps=1 2.https://www. ...
- 启动tomcat时报错:http-nio-8080-exec-10
启动Tomcat后访问 http://192.168.199.10:8080/jpress-web-newest 网页,查看日志有报错 问题原因:Java的内存溢出 故障现象为: cat /app ...
- bootloaderd的再解析
boot的0脚和1脚可以选择启动方式,以前只知道可以选择的方式是nandflash启动,或者选择从norflash启动,当选择nandflash启动时,cpu看到的0地址是ram的0地址,根据是nan ...
- LinkedIn TAG
List1 [leetcode]243. Shortest Word Distance最短单词距离 Two Pointers [leetcode]244. Shortest ...
- CentOS7升级默认内核
安装内核升级镜像源 rpm -Uvh https://www.elrepo.org/elrepo-release-7.0-3.el7.elrepo.noarch.rpm Yum安装内核 yum --e ...
- c++11新标准for循环和lambda表达式
:first-child { margin-top: 0px; } .markdown-preview:not([data-use-github-style]) h1, .markdown-previ ...