传送门

题意简述:给你一张无向图,问你满足存在从a−>b−>ca->b->ca−>b−>c且不经过重复节点的路径的有序点对(a,b,c)(a,b,c)(a,b,c)的数量。


思路:

对每一个连通块建一棵圆方树,然后可以按照圆点和方点做不同的树形dpdpdp。

圆点:找存在于两棵不同子树的点对数

方点:找存在于三颗不同子树的点对数。

代码:

#include<bits/stdc++.h>
#define ri register int
using namespace std;
const int rlen=1<<18|1;
inline char gc(){
    static char buf[rlen],*ib,*ob;
    (ib==ob)&&(ob=(ib=buf)+fread(buf,1,rlen,stdin));
    return ib==ob?-1:*ib++;
}
inline int read(){
    int ans=0;
    char ch=gc();
    while(!isdigit(ch))ch=gc();
    while(isdigit(ch))ans=((ans<<2)+ans<<1)+(ch^48),ch=gc();
    return ans;
}
typedef long long ll;
const int N=2e5+5;
vector<int>e[N],g[N];
int n,m,low[N],all,dfn[N],sig,tot=0,stk[N],siz[N],top=0;
ll ans=0;
void tarjan(int p){
    ++all,low[p]=dfn[p]=++tot,stk[++top]=p;
    for(ri i=0,v;i<e[p].size();++i){
        if(!dfn[v=e[p][i]]){
            tarjan(v),low[p]=min(low[v],low[p]);
            if(low[v]>=dfn[p]){
                g[++sig].push_back(p),g[p].push_back(sig);
                int x;
                do g[sig].push_back(x=stk[top--]),g[x].push_back(sig);while(x^v);
            }
        }
        else low[p]=min(dfn[v],low[p]);
    }
}
void dfs(int p,int fa){
    siz[p]=p<=n;
    int sum=0;
    ll tmp=0;
    for(ri i=0,v;i<g[p].size();++i)if((v=g[p][i])^fa){
        dfs(v,p);
        tmp+=(ll)sum*siz[v];
        sum+=siz[v],siz[p]+=siz[v];
    }
    tmp+=(ll)sum*(all-siz[p]);
    if(p<=n)ans+=tmp;
    else{for(ri i=0,v;i<g[p].size();++i)if((v=g[p][i])^fa)ans+=tmp-(ll)(all-siz[v])*siz[v];ans+=tmp-(ll)(all-siz[p])*siz[p];}
}
int main(){
    sig=n=read(),m=read();
    for(ri i=1,u,v;i<=m;++i)u=read(),v=read(),e[u].push_back(v),e[v].push_back(u);
    for(ri i=1;i<=n;++i)if(!dfn[i])all=0,tarjan(i),dfs(i,0);
    cout<<ans*2;
    return 0;
}

2019.03.29 bzoj5463: [APIO2018] 铁人两项(圆方树+树形dp)的更多相关文章

  1. [APIO2018]铁人两项——圆方树+树形DP

    题目链接: [APIO2018]铁人两项 对于点双连通分量有一个性质:在同一个点双里的三个点$a,b,c$,一定存在一条从$a$到$c$的路径经过$b$且经过的点只被经过一次. 那么我们建出原图的圆方 ...

  2. loj2587 「APIO2018」铁人两项[圆方树+树形DP]

    主要卡在一个结论上..关于点双有一个常用结论,也经常作为在圆方树/简单路径上的良好性质,对于任意点双内互不相同的三点$s,c,t$,都存在简单路径$s\to c\to t$,证明不会.可以参见clz博 ...

  3. [BZOJ5463][APIO2018]铁人两项(圆方树DP)

    题意:给出一张图,求满足存在一条从u到v的长度大于3的简单路径的有序点对(u,v)个数. 做了上一题[HDU5739]Fantasia(点双连通分量+DP),这个题就是一个NOIP题了. 一开始考虑了 ...

  4. [APIO2018] Duathlon 铁人两项 圆方树,DP

    [APIO2018] Duathlon 铁人两项 LG传送门 圆方树+简单DP. 不会圆方树的话可以看看我的另一篇文章. 考虑暴力怎么写,枚举两个点,答案加上两个点之间的点的个数. 看到题面中的一句话 ...

  5. [APIO2018]铁人两项 --- 圆方树

     [APIO2018] 铁人两项 题目大意: 给定一张图,问有多少三元组(a,b,c)(a,b,c 互不相等)满足存在一条点不重复的以a为起点,经过b,终点为c的路径 如果你不会圆方树 ------- ...

  6. [APIO2018]铁人两项 [圆方树模板]

    把这个图缩成圆方树,把方点的权值设成-1,圆点的权值设成点双的size,算 经过这个点的路径的数量*这个点的点权 的和即是答案. #include <iostream> #include ...

  7. 【Luogu4630】【APIO2018】 Duathlon 铁人两项 (圆方树)

    Description ​ 给你一张\(~n~\)个点\(~m~\)条边的无向图,求有多少个三元组\(~(x, ~y, ~z)~\)满足存在一条从\(~x~\)到\(~z~\)并且经过\(~y~\)的 ...

  8. LOJ 2587 「APIO2018」铁人两项——圆方树

    题目:https://loj.ac/problem/2587 先写了 47 分暴力. 对于 n<=50 的部分, n3 枚举三个点,把图的圆方树建出来,合法条件是 c 是 s -> f 路 ...

  9. 洛谷P4630 铁人两项--圆方树

    一道很好的圆方树入门题 感谢PinkRabbit巨佬的博客,讲的太好啦 首先是构建圆方树的代码,也比较好想好记 void tarjan(int u) { dfn[u] = low[u] = ++dfn ...

随机推荐

  1. BufferedStream说明

    BufferedStream并不是将所有内容都存放到内存中,而MemoryStream则是. BufferedStream必须跟其他流如FileStream结合使用,而MemoryStream则不用

  2. EXPRESS项目PM2启动NODE_ENV传参数不生效问题解决方法

    expree项目开发完,涉及到不同环境,要在启动到时候就要配置好环境变量, packge.json文件如下: "scripts": { "dev": " ...

  3. VS2017企业版密钥

    Visual Studio 2017(VS2017) 企业版 Enterprise 注册码:NJVYC-BMHX2-G77MM-4XJMR-6Q8QFVisual Studio 2017(VS2017 ...

  4. day47 选择器优先级及嵌套关系

    复习 1.前端: 网页, html + css + js 2.html三个组成部分:标签,指令和转义字符 标签: <>包裹, 以字母开头, 可以结合-|数字, 能被浏览器解析的标记 3.常 ...

  5. Pandas透视表和交叉表

    透视表 参数名 说明 values 待聚合的列的名称.默认聚合所有数值列 index 用于分组的列名或其他分组键,出现在结果透视表的行 columns 用于分组的列表或其他分组键,出现在结果透视表的列 ...

  6. UNIX网络编程(卷1)——学习过程中遇到的新词语

    第2章 传输层:TCP.UDP.SCTP TCP Trasmission Control Protocol 传输控制协议 UDP User Datagram Protocol 用户数据报协议 SCTP ...

  7. antd-react-mobile(踩坑记录)

    1.按照官网步骤进行, $ npm install -g create-react-app # 注意:工具会自动初始化一个脚手架并安装 React 项目的各种必要依赖,如果在过程中出现网络问题,请尝试 ...

  8. 神经网络训练tricks

    神经网络构建好,训练不出好的效果怎么办?明明说好的拟合任意函数(一般连续)(为什么?可以参考http://neuralnetworksanddeeplearning.com/),说好的足够多的数据(h ...

  9. Swift Realm 完整使用记录

    新项目用到了数据库,本来之前用的都是 SQL,但是语法写的实在是恶心,所以使用 Realm 尝试一下. 1.我使用的 pod 库,所以先 pod 库安装一下,安装完别忘了先编译一下,不然 import ...

  10. 关于项目里server清楚缓存的代码

    Venk proc存在很多问题,不能应对高并发的情况,所以提供了这个 方法来清理cache, 但是前提是需要有prod的权限: 要想验证是否通过URL清楚了缓存,就要 removeCache url执 ...