https://nanti.jisuanke.com/t/30999

题意

f(i)表示i能拆分成两个数的乘积,且要求这两个数中各自都没有出现超过1次的质因子的方案数。每次给出n,求∑(n,i=1)f(i)

分析

n到2e7,肯定得打表离线做。

类似打欧拉函数表的方式,对于数d以及素数p,f(p)=2;
当d|p时,若d|p^2,则f(d∗p)=0;否则f(d∗p)=f(d)/2;
当d†p时,f(d∗p)=f(d)∗2

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn=2e7+;
bool vis[maxn];
int prime[maxn];
LL f[maxn];
LL res[maxn];
void init(int n){
int cnt=;
f[]=;
for(int i=;i<n;i++){
if(!vis[i]){
prime[cnt++]=i;
f[i]=;
}
for(int j=;j<cnt&&i*prime[j]<n;j++){
vis[i*prime[j]]=;
if(i%prime[j]==){
if(i%(prime[j]*prime[j])==) f[i*prime[j]]= ;
else f[i*prime[j]]= f[i]/;
break;
}
else{
f[i*prime[j]]= f[i]*;
}
}
}
for(int i=;i<maxn;++i) res[i] = res[i-]+f[i];
} int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
init(maxn);
int T; scanf("%d",&T);
while(T--){
int n; scanf("%d",&n);
printf("%lld\n",res[n]);
}
return ;
}

ACM-ICPC 2018 南京赛区网络预赛 J Sum (思维+打表)的更多相关文章

  1. ACM-ICPC 2018 南京赛区网络预赛 J.sum

    A square-free integer is an integer which is indivisible by any square number except 11. For example ...

  2. ACM-ICPC 2018 南京赛区网络预赛 J.sum(欧拉筛)

    题目来源:https://nanti.jisuanke.com/t/A1956 题意:找一个数拆成无平方因子的组合数,然后求前缀和. 解题思路:我们可以把某个数分解质因数,如果某个数可以分解出三个相同 ...

  3. 线性素数筛 ACM-ICPC 2018 南京赛区网络预赛 J Sum

    https://www.jisuanke.com/contest/1555?view=challenges 题意: 题解:写完都没发现是个积性函数233 想法就是对x分解质因数,f(x)就是2^k,其 ...

  4. ACM-ICPC 2018 南京赛区网络预赛 - J. Sum (找规律+打表)

    题意:\(f(i):i\)能拆分成两个数的乘积,且要求这两个数中各自都没有出现超过1次的质因子.每次给出n,求\(\sum_{i=1}^{n}f(i)\) 分析:\(1 \le n \le 2e7\) ...

  5. ACM-ICPC 2018 南京赛区网络预赛 J sum (找一个数拆成两个无平方因子的组合数)

    题目大意:就是找一个数拆成两个无平方因子的组合数,然后求个前缀和  ; 分析:运用筛法的思想 ,  因为有序对是由两个合法的数字组成的,所以只要保证第一个数合法,第二个数也合法就行,找出合法的第二个数 ...

  6. 计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)

    J. Sum 26.87% 1000ms 512000K   A square-free integer is an integer which is indivisible by any squar ...

  7. ACM-ICPC 2018 南京赛区网络预赛 J题Sum(线性筛素数)

    题目链接:https://nanti.jisuanke.com/t/30999 参考自博客:https://kuangbin.github.io/2018/09/01/2018-ACM-ICPC-Na ...

  8. 【ACM-ICPC 2018 南京赛区网络预赛 J】Sum

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 线性筛求出每个数的最小质因子x for 从1-n 对于i,它的最小质因子为x 考虑i=ab 如果i能被x^3整除 那么这x怎么分配给 ...

  9. ACM-ICPC 2018 南京赛区网络预赛 E题

    ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ...

随机推荐

  1. 【XSY1476】平凡之路 斜率优化DP

    题目大意 有\(n\)个格子,一开始你在\(1\)号格子.每次你只能往编号更大的格子走.从第\(i\)个格子走到第\(j\)个格子的代价是\(a_i+a_j\times(j-i)\times m\) ...

  2. Breakable loop in Scratch

    Breakable loop in Scratch https://stackoverflow.com/questions/30682144/breakable-loop-in-scratch Bre ...

  3. Python中使用operator模块实现对象的多级排序

    Python中使用operator模块实现对象的多级排序 今天碰到一个小的排序问题,需要按嵌套对象的多个属性来排序,于是发现了Python里的operator模块和sorted函数组合可以实现这个功能 ...

  4. 自学Python4.7-生成器(方式一:生成器函数)

    自学Python之路-Python基础+模块+面向对象自学Python之路-Python网络编程自学Python之路-Python并发编程+数据库+前端自学Python之路-django 自学Pyth ...

  5. C 头文件、宏、编译问题

    @2019-02-15 [小记] > C 头文件的防重复包含是针对同一个源文件而言 原因: #include 头文件就是一段代码的拷贝,头文件中若有类型定义等,重复包含就会造成编译错误,若无类型 ...

  6. rt-thread中线程内置定时器的作用 ---

    @2019-01-15 [小记] 常见到在内核组件的接口函数中,配置和启动一个定时器后,启动线程调度 我猜想是超时时间到达后恢复调用接口函数的线程以执行线程调度语句后的代码

  7. 654. Maximum Binary Tree

    654. Maximum Binary Tree 题目大意: 意思就是给你一组数,先选一个最大的作为根,这个数左边的数组作为左子树,右边的数组作为右子树,重复上一步. 读完就知道是递归了. 这个题真尼 ...

  8. jpa 原生查询createNativeQuery里面有冒号保留字关键字的问题

    用\\:替换. 比如: String sql = "select location.ToString() a,version,location.STDistance(geometry\\:\ ...

  9. ElasticSearch6.5.0 【Rejecting mapping update to [posts] as the final mapping would have more than 1 type】

    今天想在一个Index上增加一个type,结果报错 java.lang.IllegalArgumentException: Rejecting mapping update to [posts] as ...

  10. C++基础知识-Day5

    今天主要讲的是类的扩展 1.类成员函数的存储方式 首先我们介绍类成员函数的存储方式,C++引入面向对象的概念之后,C语言中的一些比如static/const等原有语义,作一些升级,此时既要保持兼容,还 ...