【clustering】之K-means && K-medoids
k-means
k-medoids
一、clustering 中的 loss function
关于聚类的性能评价标准 参考博客
可以为外部指标和内部指标,其中外部指标是指 聚类结果与某个 “参考模型" 进行表示, 内部指标直接考察聚类结果不参考模型
- 外部指标:
1、Jaccard系数
系属于相同类占总类数的比例, 越大说明效果越好。
- 内部指标:
1、DB指数
DB计算 任意两类别的类内距离平均距离(CP)之和除以两聚类中心距离 求最大值
DB越小意味着类内距离越小 同时类间距离越大
- k-means 所要优化的目标函数
设我们一共有 N 个数据点需要分为 K 个 cluster ,k-means 要做的就是最小化 这个函数,
其中 在数据点 n 被归类到 cluster k 的时候为 1 ,否则为 0 。
二、K值选取规则:
1、轮廓系数:
三、k-means与kmedoids
- k-means与k-medoids的不同之处
k-means在求聚类中心点时使用 均值 的方法来求的, k-medoids求聚类中心点时是用 中位数(质心) 的方法来求的,也就是说k-means的中心点是连续空间的值,而k-medoids是样本数据中的某一个。
- 为什么k-medoids用中位数?(k-medoid比k-means好在哪里)
- 对于数值特征来说是没问题的,但是对于类别特征呢,这里举了一个对狗进行分类的栗子,相减,求均值就没什么意义,所以聚类中心点就从该cluster中选取,然后自定义一个衡量dissimilarity的函数,最终k-medoids的损失函数:,
最常见的方式是构造一个 dissimilarity matrix 来代表 ,其中的元素 表示第 只狗和第 只狗之间的差异程度,
2. k-medoids对噪声的鲁棒性更强,有一个噪声点,k-means很容易受影响,相反,k-medoids却没受多大影响
- k-medoids时间复杂度比k-means
k-medoids确定中位数时,需要n^2的时间,或者nlogn
局限性
1、受初始聚类点的影响
- 选择合适的初始点,可以加快算法的收敛速度和增强类之间的区分度
- 针对具体的问题有一些启发式的选取方法,或者大多数情况下采用随机选取的办法
- k-means 并不能保证全局最优,而是否能收敛到全局最优解其实和初值的选取有很大的关系,所以有时候我们会多次选取初值跑 k-means ,并取其中最好的一次结果。
参考博客:
【clustering】之K-means && K-medoids的更多相关文章
- 判断字符串是否包含字母‘k’或者‘K’
判断字符串是否包含字母‘k’或者‘K’ public bool IsIncludeK(string temp) { temp = temp.ToLower(); if (temp.Contains(' ...
- 给定整数a1、a2、a3、...、an,判断是否可以从中选出若干个数,使得它们的和等于k(k任意给定,且满足-10^8 <= k <= 10^8)。
给定整数a1.a2.a3.....an,判断是否可以从中选出若干个数,使得它们的和等于k(k任意给定,且满足-10^8 <= k <= 10^8). 分析:此题相对于本节"寻找满 ...
- 【POJ】2449.Remmarguts' Date(K短路 n log n + k log k + m算法,非A*,论文算法)
题解 (搬运一个原来博客的论文题) 抱着板题的心情去,结果有大坑 就是S == T的时候也一定要走,++K 我发现按照论文写得\(O(n \log n + m + k \ log k)\)算法没有玄学 ...
- LeetCode OJ:Reverse Nodes in k-Group(K个K个的分割节点)
Given a linked list, reverse the nodes of a linked list k at a time and return its modified list. If ...
- UVA 1363 Joseph's Problem 找规律+推导 给定n,k;求k%[1,n]的和。
/** 题目:Joseph's Problem 链接:https://vjudge.net/problem/UVA-1363 题意:给定n,k;求k%[1,n]的和. 思路: 没想出来,看了lrj的想 ...
- js为Object对象动态添加属性和值 eval c.k c[k]
const appendInfo = () => { const API_SECRET_KEY = 'https://github.com/dyq086/wepy-mall/tree/maste ...
- d[k]=eval(k)
lk = ['oid', 'timestamp', 'signals', 'area', 'building', 'city', 'name', 'floor', 'industry', 'regio ...
- bzoj3028食物 关于(1+x+x2+x3+x4+...)^k的第i项系数就是c(i+k−1,k−1)的证明
关于(1+x+x2+x3+x4+...)^k的第i项系数就是c(i+k−1,k−1)的证明对于第i项,假设为5x^5=x^0*x^5x^5=x^1*x^4x^5=x^2*x^3........也就是说 ...
- python代码{v: k for k, v in myArray.items()}是什么意思?
最近在扒vnpy的源码总能看到{v: k for k, v in ORDERTYPE_VT2HUOBI.items()}这样的源码,就是不知道什么意思 然后万能的google找到了Quora的一个类似 ...
- 解析形如(k,v)(k,v)(k,v)字符串
有时根据需要会将map数据格式化成(k,v)(k,v)(k,v)--字符串,之后需要还原,下面代码实现了还原过程 1 void SplitString(const string& s, vec ...
随机推荐
- 在web-inf外面 使用的是绝对路径进行访问 “/”表示访问文件夹 一层一层方式 我们在windos下访问文件夹也是一层一层的访问
- if 结构语句
if 条件: print()#不只是能输入print
- 【嵌入式】Arduino编程基础到应用全解析
Arduino Author: Andrew.Du 基础 基础语法: setup() loop() pinMode(引脚,模式) pinMode(13,OUTPUT):设置13号引脚为输出 //在使用 ...
- 了解AutoCAD对象层次结构 —— 3 ——数据库
数据库的结构是什么样的?对象是如何存储在数据库中的?这些问题我们需要搞明白.在此我们可以借助工具ArxDbg或MgdDbg来查看数据库结构及其内容.下图就是利用MgdDbg工具查看到的内容,我们可以看 ...
- 基于docker部署使用ELK+FileBeat日志管理平台
Docker从狭义上来讲就是一个进程,从广义上来讲是一个虚拟容器,专业叫法为 Application Container(应用容器).Docker进程和普通的进程没有任何区别,它就是一个普通的应用进程 ...
- python之旅4[第四篇]
常用内置函数 map 遍历序列,对序列中的每个元素操作,获取新的序列 如下 对所有元素加10 li = [,,,] def func(arg): new_list = map(func,li) pr ...
- #194 sequence(搜索+动态规划+主席树)
考虑按顺序暴搜子序列.如果序列中的数两两不同,显然每次给上一个找到的子序列添上后缀最小值,即为下一个要找的子序列.如果不能再加了就回溯继续考虑后缀次小.第三小……值,直到找到k个子序列. 有重复的数后 ...
- 聊聊jvm的CompressedClassSpace
序本文主要研究一下jvm的CompressedClassSpace CompressedClassSpacejava8移除了permanent generation,然后class metadata存 ...
- html概述和基本结构
html概述 HTML是 HyperText Mark-up Language 的首字母简写,意思是超文本标记语言,超文本指的是超链接,标记指的是标签,是一种用来制作网页的语言,这种语言由一个个的标签 ...
- bzoj1047/luogu2216 理想的正方形 (单调队列)
开b组单调队列,分别维护此时某一列中的最大/最小值 然后我每次把它们的头取出来,塞到维护行的单调队列里,就是n*n的最大/最小值 #include<bits/stdc++.h> #defi ...