AOP切面编程,作用:事务,日志,统一调用,统一实现,拦截,分发;

切点:告诉编译器切面作用于哪个package中的class

IOC:控制反转,相对于new 对象来说的,依赖注入;AuthorWare  1、根据类型查找内存中的class,2,根据命名查找,如果一个接口由多个实现的时候,根据这个名字可以判断取哪一个,所以这个名字要求规范;

AOP和IOC的更多相关文章

  1. AOP和IOC的作用

    IOC:控制反转,是一种设计模式.一层含义是控制权的转移:由传统的在程序中控制依赖转移到由容器来控制:第二层是依赖注入:将相互依赖的对象分离,在spring配置文件中描述他们的依赖关系.他们的依赖关系 ...

  2. AOP和IOC理解

    在百度上看到一篇很有意思的文章,是对AOP的一种解释,如下:(摘自:百度文库的 AOP和IOC最容易理解的说明(Spring知识小计)): IOC,依赖倒置的意思, 所谓依赖,从程序的角度看,就是比如 ...

  3. SpringBoot AOP 与 IoC

    Spring的核心就是AOP与IoC,想要学习SpringBoot,首先得理解这些概念: AOP(Aspect Oriented Programming 面向切面编程) IoC(Inversion o ...

  4. AOP和IOC的作用(转)

    AOP和IOC的作用 转载▼     IOC:控制反转,是一种设计模式.一层含义是控制权的转移:由传统的在程序中控制依赖转移到由容器来控制:第二层是依赖注入:将相互依赖的对象分离,在spring配置文 ...

  5. 使用注解方式实现 AOP和IoC

    使用注解方式实现AOP和IoC IOC和DI的注解 IOC: @Component:实现Bean组件的定义 @Repository:用于标注DAO类,功能与@Component作用相当 @Servic ...

  6. Spring的AOP和IoC及隔离级别

    Spring的AOP和IoC Spring AOP:代理机制.Spring提供的自动代理机制 Spring的IoC来实组件之间的依赖关系注入, 使控制层与业务实现分离,即客户通过调用业务委托接口来调用 ...

  7. AOP与IOC的概念

    AOP与IOC的概念(即spring的核心) a) IOC:Spring是开源框架,使用框架可以使我们减少工作量,提高工作效率并且它是分层结构,即相对应的层处理对应的业务逻辑,减少代码的耦合度.而sp ...

  8. AOP和IOC的实现原理(用到的设计模式)

    文章来源:http://blog.csdn.NET/longyulu/article/details/36174979 用过spring的朋友都知道spring的强大和高深,都觉得深不可测,其实当你真 ...

  9. Spring学习笔记(二)Spring基础AOP、IOC

    Spring AOP 1. 代理模式 1.1. 静态代理 程序中经常需要为某些动作或事件作下记录,以便在事后检测或作为排错的依据,先看一个简单的例子: import java.util.logging ...

  10. AOP和IOC个人理解

    14:18 2014/5/5 IOC inversion of control 控制反转  将new对象的权力由调用者转移到spring容器(即xml文件),Struts2与Spring整合(scop ...

随机推荐

  1. Visual Studio常用插件整理

    Visual Studio Tools for Git       GIT代码管理工具 Resharper           代码生成工具 CSOutline2017      语法级别的代码折叠 ...

  2. cookie中的小错误

    今天在练习 cookie时意外的报了这个错. 这句话的意思是一个不识别的字符[32]出现在了cookie当中由于tomcat的版本比较高,所以在addCookie时是不能使用空格的 而在ASCII码中 ...

  3. c++ 实现拓扑排序

    要简洁大方地实现拓扑排序,首先要了解两个标准模板 std::queue 和 std::vector 1 queue 添加头文件 #include<queue> 定义一个int类型的队列 q ...

  4. java数据库导入excel数据

    导入数据会将表格分为xls和xlsx两种格式,网上有很多案例 1.excel数据表中的数据不全,数据库中又是必填选项:---从sql语句入手:判断有无 来改变语句 //设置可有可无 字段 加一个必有字 ...

  5. 【C/C++】龙格库塔+亚当姆斯求解数值微分初值问题

    /* 解数值微分初值问题: 龙格-库塔法求前k个初值 + 亚当姆斯法 */ #include<bits/stdc++.h> using namespace std; double f(do ...

  6. 数据库MySQL5.7.21win64位安装配置

    1,在MySQL官网下载mysql对应版本 https://dev.mysql.com/downloads/mysql/ 2,解压压缩文件到想要的位置 3,配置环境 打开  右键我的电脑-->属 ...

  7. BZOJ2281[Sdoi2011]黑白棋&BZOJ4550小奇的博弈——DP+nimk游戏

    题目描述 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小A可以移动白色 ...

  8. Luogu4726 【模板】多项式指数函数(NTT+多项式求逆)

    https://www.cnblogs.com/HocRiser/p/8207295.html 安利! #include<iostream> #include<cstdio> ...

  9. Typecho——简介及安装

    Typecho Typecho是由type和echo两个词合成的,来自于开发团队的头脑风暴.Typecho基于PHP5开发,支持多种数据库,是一款内核强健﹑扩展方便﹑体验友好﹑运行流畅的轻量级开源博客 ...

  10. 洛谷P1144最短路计数题解

    最短路计数 此题还是寻找从1到i点总共有几个最短路且每条边的边长为1,对于这种寻找最短路的个数,我们可以反向搜索,即先用\(SPFA\)预处理出所有点的最短路,然后我们反向记忆化搜索,可以用\(sum ...